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Self-organization from structural refrigeration
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The self-organization of a classical current is studied, in an exactly solvable model where both the quantum
statistics over microhistories of particles, and the macroscopic phenomenology, can be computed in closed
form. It is shown that for thermodynamically reversible systems, the Jaynes formulation of statistical mechan-
ics naturally extends to include explicit macroscopic dynamics and heterogeneities in temperature, while
preserving the structure of partition functions, effective potentials, and ground states of the equilibrium theory.
Self-organization in such reversible systems is constrained by entropy transport through engine and refrigera-
tion cycles, rather than by diffusion in gradients. Limitations in the ability to decompose such systems sensibly
into components with additive entropies, and in the extrapolation of entropy functions from equilibrium forms,
are discussed with examples.
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I. INTRODUCTION

A. Untangling self-organization from dissipation

‘‘Self-organization’’—the dynamical emergence of tem
porally or spatially ordered macrostates from microphys
subjected to less-ordered boundary conditions—has bec
an actively investigated phenomenon, especially in chemi
@1,2#, granular flow@3,4#, and the fine structure of friction
@5–7#. In all these studies, when ordering depends on
discreteness of the particles or events, the analysis is ca
out in an irreversible quasistatic limit, so that evolution is
Markov process with respect to states characterized by t
configuration~as opposed to current! variables@3,5#. When
ordering is a result of mass action, it is typically analyzed
terms of phenomenological state variables and equation
motion, whose forms are locally those of equilibrium sy
tems ~Ref. @2#, Chap. 3!. Temporal ordering emerges from
these classical equations, regarded as dynamical sys
evaluated far from their equilibrium solutions. Since all
these analyses apply to extreme-dissipative limits, there
tendency to conflate self-organization~SO! with dissipative
structures@8#, self-organized criticality@9#, or some alterna-
tive @10# but similarly irreversible process.

This paper argues that the criteria for SO are inform
tional in nature, and that they can arise in the dynamics
ideally reversible systems. The reversibility considered h
is not a tautological consequence of a finetuned microsc
reversibility ~as in Ref.@11#!, but rather the standard, macr
scopic reversibility of Carnot’s theorem in thermodynam
@12#. Here not dissipation, but the partitioning of entro
flows among elementary engine and refrigeration cyc
emerges as the organizing constraint on the system. Thu
association of dynamical organization with dissipation is
best case dependent.

The idea that SO can sensibly arise from reversible
namics is demonstrated here with mass-action models
ordinary macroscopic state variables. The key difference
this analysis from the works cited above@1,2,8#, though, is
the way in which order is defined from the residual unc
tainties in microhistories given macrohistories, by direct e
tension of the treatment of time-independent states in e
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librium statistical mechanics @13#. The measure of
uncertainty is the usual Shannon/Boltzmann entropy o
density matrix, but the evolution of this density is studied
the reversible, rather than the Markovian, limit. The po
emphasized is the key role that projection of the descript
of a system into its components has, in creating compon
entropies that can have any nontrivial dynamics. Thesenec-
essarily coarse-grainedentropies@14# induce measures o
both the degree and the complexity of the dynamically g
erated order. The concepts of both entropy production
entropy transport are derived as consequences of the inte
tion between Hamiltonian evolution and the coarse grain
implied by component projection—they are not taken
primitives.

The entropies that result do not, in general, have the p
nomenological forms of equilibrium, though by constructio
they have the same function as measures of residual un
tainty, extended to apply to dynamical macrostates. Tho
at leading order the entropies of components are additiv
in the well-known chemical mass-action models@2#, it is the
subleading orders in the evolving whole-system entropy t
quantify the spontaneously generated organization. As
pected from the careful analysis of Maxwell demons@15,16#,
only when these entropies of macroscopic organization
included as corrections to the transported entropies of c
sical Carnot’s theorem, is the correct formulation of the s
ond law of thermodynamics, and in particular its reversib
limit, respected.

The difference between the true entropies of history, a
their corresponding equilibrium phenomenological form
serves to emphasize how the quantitative understandin
SO depends on the proper definition of classical states
macroscopic descriptions of transformations in statisti
systems. It is well known that in comparisons of equilibriu
ensembles, only coarse-grained entropiescan increase, and
they are only assured to increase relative to some refere
description, if the state variables in the reference repres
the correct andcomplete constraints on the otherwise
maximum-entropy distribution@14#. Macroscopic average
that account only for a subset of the complete set of s
variables of some ensemble define an intrinsicallycoarser
©2003 The American Physical Society14-1
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ERIC SMITH PHYSICAL REVIEW E 68, 046114 ~2003!
ensemble, and the second law says nothing about how
sequent characterizations of the true ensemble may rela
such a loose initial characterization. The mere existence
macroscopic averages does not imply that they are adeq
as state variables, or place any constraint on the evolutio
entropy functions computed from them.

The same is true for ensembles whose macroscopic a
ages evolve with some interesting time dependence, ex
that the set of eligible state variables becomes larger. T
even the formulation of the second law is predicated on
nontrivial technical problem of identifying which measur
ments~available at or after any elapsed time! represent the
true constraints on the uncertainty of histories. It is sho
here that, in general, the state variables of a self-organi
system will include currents or explicitly time-dependent h
tories, as well as the static configurations adequate to c
acterize equilibrium. A restriction to instantaneous densit
or other such equilibrium forms, results in a loose charac
ization of the true state, and loss of the ability to apply t
second law as any tight constraint on their evolution. T
errors in estimating the entropy, arising simply from the
striction to an inappropriate and incomplete set of state v
ables, can be quite sufficient to completely hide the ac
entropy changes associated with the formation of order.

B. Mode of analysis and results

The current paper is not an axiomatization of SO even
reversible systems, nor does it aim to define a comple
general notation to capture all aspects of what one may w
to call organization. Good general works relating to me
sures of order and complexity in Markov and general sta
tical systems are Refs.@17,18#.

Instead, this paper presents a rather thorough analys
an exactly solvable example, which is at once an elemen
quantum statistical ensemble, and a familiar instance of
namical formation of order at the classical level. The e
ample incorporates matter flow through degrees of freed
naturally interpreted as system and environment compone
It incorporates heterogeneous and perpetually tim
dependent temperatures, and yet is completely descr
within Jaynes’s formulation of ‘‘equilibrium’’ statistical me
chanics@19#. It therefore demonstrates the subtleties of ide
tifying classical state variables when measurements ma
bounded in time, and the proper entropy function of those
a case where both are known to exist and can be express
closed form. It demonstrates the~provable! need for non-
static classical variables to define the ensemble of micro
tories, and shows quantitatively what errors are made
loose descriptions restricted to the phenomenology of e
librium. The entropies associated with both formation of
der, and simple heat flow, occur with distinct powers in
regular small-parameter expansion, and both the class
Carnot theorem and its corrections from subsystem organ
tion can be derived exactly. Finally, the model admits
effective potential description of the classical evolution, a
makes contact with a similar treatment of heterogeneous
dynamical temperatures carried out previously with fini
temperature field theory methods@20,21#.
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The model chosen as example is a linear quantu
oscillator idealization of the spontaneous formation of
inductor~L! current from a capacitor~C! charge separation in
a resistancelessLC circuit, or any number of other equiva
lent processes of macroscopic oscillation between poten
and kinetic order, ultimately created by interference of qu
tum coherent states. While this is the simplest nontriv
model possible, it captures the process by which nontriv
self-organization happens in empirically interesting cas
among which the self-organizing reversible thermoacou
engines@22# have already been analyzed as dynamical cr
cal systems@21#. Furthermore, the Carnot organization
macroscopic entropy transport~once that has been derived a
a process! has clear and relevant isomorphisms in biochem
cal processes such as enzyme-catalyzed polymeriza
Therefore the form of the model has been chosen to m
mize the explicit overlap with these cases.

The analysis leads to two main conclusions of a fun
mental nature.

The Jaynsian ‘‘maximum-ignorance’’ formulation of sta
tistical mechanics@19# offers a principled definition of clas
sical states, which is general enough to include the cla
cally reversible systems on an equal footing with those
static equilibrium. Properly understood, it follows more
less from definition that classical reversibility, and n
merely equilibrium, is the proper domain of ‘‘equilibrium
statistical mechanics.

The familiar thermodynamic potentials, such as the He
holtz or Gibbs potentials@13#, are simply the leading term
in an expansion in heterogeneities of the environmental c
straints on an ensemble. Where the equilibrium form c
tures the static response of the system to the homogen
constraints imposed by the environment, the succeed
terms represent the coupling to heterogeneities, and the t
dependent or current responses of the system to them.
will be demonstrated explicitly in the example, but it is im
portant enough to deserve a separate abstract treatment
following section.

Though limited in scope, this discussion serves as a
step in a systematic analysis of SO in its own terms. T
reversible limit considered here readily admits the steady
namical incorporation of uncertainty by tracing over uno
served aspects of the environmental state or interaction
precise analysis of the origins of irreversibility, and its co
sequences for the forms of possible ordered states, can
be pursued directly. These extensions will be performed
future work.

C. Layout of the paper

The paper is organized as follows. Section II abstracts
generalization of thermal effective potentials to reversi
systems with heterogeneous temperatures and possibly
plicit dynamics. Section III reviews the relevant features
the empirically well-studied thermoacoustic engines, and
considerations from biochemistry relevant to reversible S
Section IV introduces the actual model, and computes
properties as a microcanonical ensemble, a system of
organizing components, and a classical engine. Section V
4-2
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SELF-ORGANIZATION FROM STRUCTURAL REFRIGERATION PHYSICAL REVIEW E68, 046114 ~2003!
fines the proper entropy of histories, and the generaliza
of the Helmholtz potential for the dynamical model. Final
Sec. VI discusses consequences for the interpretation
complexity and the notion of ground states.

Following the main text, six appendixes establish notat
and introduce the tools and supporting calculations that
late this derivation to other analyses of SO in engin
@20,21#. They are written to be readable as an independ
track on mathematical methods, and to introduce a num
of tools for handling heterogeneous-temperature parti
functions that have not been used before. Of particular m
odological interest are Appendix C, which introduc
Gaussian-coherent representation of thermal ensembles
Appendix F, which derives the relation of the current discr
method for handling heterogeneous temperature, to fin
temperature field-theory methods developed previously@20#.

II. EFFECTIVE POTENTIALS FOR
HETEROGENEOUS-TEMPERATURE SYSTEMS

A. Constraints, distributions, and state variables

An obvious and often-advanced goal@3# ~Ref. @2#, Sec.
7.8! in the analysis of dynamical SO is to relate the form
tion of order to processes like spontaneous symmetry br
ing @23# in equilibrium critical phenomena, which have
well-understood conceptual foundation. The most comp
and still one of the conceptually clearest, tools for und
standing the relation of expressed to hidden symmetrie
the effective potential@24#, which has indeed motivated a
industry of deriving potential methods for stochastic~Mar-
kov! processes@25,26#.

An advantage of studying SO first in reversible system
that, even when their order is explicitly dynamical, the
yield effective-potential descriptions that are a direct co
tinuation of the familiar thermodynamic potentials of equ
librium. One can therefore introduce the effects of enviro
ments that impose heterogeneous temperatures~or other
thermodynamic potentials! and induce flows, without simul
taneously taking on the additional difficulties of breaki
time-reversal symmetry and having to reinterpret the me
ings of operators in the Markov case@25# relative to those in
the underlying Hamiltonian field theory.

The usual Helmholtz potentialA for a static system in
equilibrium thermal contact with an external world at hom
geneous temperatureT[1/b is defined by

bA5bU2S. ~1!

The structure ofA directly portrays its function. One ma
regard U ~average internal energy! and S ~Shannon/
Boltzmann entropy! as properties of whatever distributio
represents the system, well defined whether or not i
coupled to an environment. When coupling is introducedU
is the system property on which the environment impose
constraint, andS is the system property maximized whe
average internal energy is theonly constraint.b is the con-
stant of proportionality, characterizing the environme
which determines the slopedS/dU to which the system
settles. Only in the maximum-entropy configuration does
04611
n

of

n
e-
s
nt
er
n
h-

nd
e
e-

-
k-

t,
-
is

is

-

-

n-

-

is

a

,

e

scalar constraint ondS/dU determine an entire distribution
at which pointU andT becomestate variablessufficient to
define the resulting ensemble.

In equilibrium theory,S is assumed to be a function o
static configuration variables only. If there is order in t
state that maximizesS at constrainedU, even if it arises by
symmetry breaking and is not ‘‘selected’’ by the fine stru
ture in the environment, one still thinks of the need for ord
as being ‘‘imposed’’ by the environmental constraint. That
the system is as disordered as it can be when coupled to
environment.

Self-organizing systems are anomalous with respect to
representation given by the equilibrium effective potenti
because they are typically more ordered than any of its
tropy maxima. The excess order only arises, though, w
heterogeneities in the environment induce flows through
system. In the simplest case, the characterization equiva
to Eq. ~1! must therefore contain at least some set of te
peratures$Ti[1/b i%. The potentialA cannot, in general,
identify the response of the system to such an environm
and the minimal set of state variables needed to corre
compute the residual microstate uncertainty is no lon
static. There can, however, be a functionA that generalizesA
appropriately. If, from the$b i% ~by whatever prescription!
one computes some average inverse temperatureb̄ that
couples toU, A will, in general, take the form

b̄A5b̄U1(
( i , j )

~b i2b j !Ji j 2S. ~2!

The $Ji j % are some set of time-dependent state variab
effectively constrained by the corresponding temperature
ferencesb i2b j . They may represent classical histories
reversible systems, in which case theb i2b j will generally
be data on some Cauchy surface, which specify the in
conditions for the ensemble in question. Alternatively, in
reversible systems, the$Ji j % may represent currents wit
time-invariant values, but which break time-reversal symm
try, and theb i2b j may represent steady-state boundary c
ditions. ~Derivation of this latter form will be provided in
future work incorporating irreversibility.! S in Eq. ~2! will, in
general, depend onU and all of theJi j . As in the equilibrium
case, theb i will select U andJi j values through the deriva
tives ofS. At this maximum of the more general entropy, th
distribution again depends only on theU andJi j values, and
it becomes sensible to interpret them as the state variab

The model introduced in Sec. IV generates an expl
instance of Eq.~2!, in which the dynamical system has a
exact representation as a density matrixr over quantum
states of simple-harmonic oscillators, andS has a closed-
form evaluation as the trace ofr ln r. Particle transport
through classical simple-harmonic oscillation is the on
nonequilibrium form of order, andb i2b j are initial tem-
perature boundary conditions in two ‘‘reservoirs’’ of the e
vironment, which then imprint themselves forever on osc
lating charge/current history variablesJi j .
4-3
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ERIC SMITH PHYSICAL REVIEW E 68, 046114 ~2003!
B. Classical reversibility is generalized ‘‘equilibrium’’

The definition ofstate variableused here is: one of a se
of constraints intrinsic to what one calls a thermodynam
system. It then follows that entropies computed from
state variables must be intrinsic properties of the system,
not artifacts of a deliberate coarseness in its characteriza
This is in slight contrast to the point of view usually adopt
in statistical mechanics@2,13#, that the state variables are th
only macroscopic quantitiesworth measuring, even to char
acterize a unique instance of a strongly chaotic system. In
latter use, the very definition of entropy is context depend
@14#, upon what one considers worth measuring.

One can acknowledge the context dependence of en
pies computed from macroscopic averages, while at the s
time allowing them to be intrinsic properties of the syste
by associating classical state variables with thepreparation
conditions that admit a class of instances, which one la
measures as an ensemble.~An ideal example is the Stern
Gerlach experiment.!

From such a definition, there follows an unambiguous d
tinction between reversible and irreversible processes. S
every ensemble admits an arbitrarily large collection of m
surements, and since measurements in the real world req
either lapse of time or selection of parallel instances,
statistical distinction to be made is whether an arbitrary
of measurements is predicated on a fixed uncertainty of
tories, given once and for all, or not. Thus, one may defi
the following.

~1! A process described by an ensemble isreversibleif an
arbitrary collection of measurements on the ensembl
constrained by a fixed uncertainty over microscopica
specified histories.

~2! A process isirreversible if the specification of evolution
in the ensemble admits a changing set of microhistor
and thus the order and time requirements of meas
ments affect the sets of histories on which they are ma

Under this definition, it is a tautology that the expansi
of which Eq.~2! lists the first few possible terms is gener
for classically reversible processes. Hamiltonian dynam
implies that the indexing of microhistories at any time has
isomorphism to an indexing at any other time. Macrosco
reversibility implies that the uncertainty of the ensemble
fixed; hence there is an isomorphism between any pai
complete sets of state variables, such as those bounded
after two different times. The technical challenge is simply
identify the isomorphism. Thus, the proper domain
Jaynes’s statistical mechanics is the category of classic
reversible processes, and not just the static equilibria wi
it.

The question of when the state variables of either a
versible or irreversible system, bounded by some seque
of times, retain a criterion ofsimplicity ~such as time locality
or spatial smoothness! is a separate and technical issue.
demands that the state variables both capture the constr
from preparation, and satisfy an ongoing restriction of for
When both requirements are satisfied, one may be slo
about distinguishing what is intrinsic to the ensemble fro
what are the limitations of the experimenter, and gloss o
the distinction emphasized here. The special place of s
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equilibria among the reversible processes is that they m
readily permit this identification.

III. MOTIVATIONS FOR THE MODELS

Two aspects of the model constructed below are c
strained to make contact with empirical cases of SO. Fi
the simple redistribution of quantum bosons to form a cl
sical current is used to represent the formation of order i
real, reversible, dynamical critical system. For this the re
resentative instance is the traveling-wave thermoacoustic
gine. Second, it is asserted that organization according
Carnot cycles is a plausible principle for the formation
order. The map to enzymatic catalysis in biochemistry, wh
it requires a conversion from thermal to chemical hetero
neity, is an interesting as well as conceptually important
main in which to argue that this is the case.

A. The self-starting, self-organizing heat engines

There is a class of acoustic, ideal-gas heat engines@22#
with the following structure and properties. An engine co
sists of a periodic~typically toroidal! resonator filled with an
ideal gas, and a stack of plates or pins in the flowstream
the gas, with one end of each plate coupled to a sourc
heat, and the other to a sink, as shown in Fig. 1. Thermali
phonons may be regarded as the only excitations in the
tem.

When the temperature difference between the ends of
plates exceeds a critical value, a classical traveling wav
the fundamental frequency, and arbitrarily determined pha
spontaneously condenses from the thermal phonon bath
the ideal inviscid limit of the gas, the critical temperatur
are 06 for the ~orthogonal! opposite-sense waves, travelin
in the direction of the temperature gradient. The travel
wave implements an ideal~Carnot-efficient! Stirling cycle
@27#, from which the work extracted is stored in increas
in-phase magnitude of the existing wave, by an acoustic p
cess akin to Dicke superradiance@28#. Significant fractions

FIG. 1. The idealized traveling-wave thermoacoustic engi
Squares are reservoirs at temperaturesTH andTC , and the concen-
tric circles represent the resonator. Short parallel lines in the re
nator are the stack of closely spaced plates, coupled to the r
voirs at either end as indicated by the arrows. Dashed ar
indicates the direction of propagation of the spontaneously ge
ated traveling wave.
4-4
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SELF-ORGANIZATION FROM STRUCTURAL REFRIGERATION PHYSICAL REVIEW E68, 046114 ~2003!
of this ideal efficiency have been achieved in realized
gines@29#.

If small dissipation is introduced in the classical ga
equation as a regulator, via a Langevin equation, the crit
temperatures for the dual modes separate to nonzero pos
and negative values, and the spontaneously formed so
saturates asADT2DTC, whereDT and DTC are, respec-
tively, the imposed and critical temperature differences
plate ends. This behavior can be derived from an effec
field theory for the fundamental modes@21# of the Onsager-
Machlup form@30#.

The engines are self-organizing, by the criterion that
classical-wave configuration has lower entropy than
isoenergetic thermal population of the fundamental wa
vector states. Furthermore, this SO process has been ex
itly mapped to an equilibrium critical phenomenon@20,21#
with an extension of finite-temperature field theory metho
to incorporate heterogeneous temperatures.@The correspon-
dence of that method to Eq.~2! is developed in Appendix F.#
Yet the organized state itself is nothing more than an as
metric population of wave vector states for thermaliz
bosons. Formation of just such a current state can be re
duced in the appropriate linear oscillator model.

B. Chemical engine cycles in biology

A shared feature of the most commonly treated ma
action self-organizing systems, such as Benard convec
@31#, the Belousov-Zhabotinsky reaction@32#, and the irre-
versible~standing-wave! thermoacoustic engines@33#, is that
organization depends intrinsically on diffusion in gradien
Taking these systems as models for the origin of biochem
order @2# presumes the associated intrinsic inefficiency
diffusion, in one form or another, as requisite to ordering

Even apart from the empirical observation that many b
chemical processes achieve remarkable fractions of idea
ficiency @34#, the surprisingly mechanical sequence throu
which fundamental ordering operations such as enzym
cally catalyzed polymerization take place suggests that a
scription in terms of chemical engines powering chemi
refrigerators may be more appropriate. While this pape
not the place to justify such a description in detail, to app
ciate the applications of the model it is useful to understa
in what sense polymerization is abstractly just another ref
eration process.

The decomposition of the simplest polymerization mo
has two pairs of reservoirs. One pair is the cytoplasmic
lution versus the formed polymer as distinct reservoirs
monomers. The different entropies of arrangement fo
monomer in either reservoir gives an entropic contribution
the chemical potential difference. The other pair is pyroph
phate versus orthophosphate as alternative reservoir s
for phosphate groups, with ATP or GTP generally acting
the stabilizing reservoir for the energetic pyrophosph
bond. The enzyme is a mechanical mediator that allows
phosphates to decay only in lockstep with incorporation
the monomers into the polymerized form@41#.

The essential point to appreciate is that in reversible S
the entropy flux behaves like any classical Noether curr
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@20#, and thus is not mathematically distinguished from
flux of particle number~monomer or phosphate group!
across chemical potentials. Figure 2 shows the corresp
dence between the thermal~temperature/entropy! Carnot
cycle, and its chemical~chemical potential/particle number!
counterpart. The legs in the chemical cycle correspond
rectly to the simplified steps in polymerization, as follows

~1! A monomer diffuses from the cytoplasm to the acti
site of an enzyme, where ann-mer is already bound. This
step is the intake of the monomer from a reservoir w
which the enzyme is in equilibrium.

~2! Whether at binding to the enzyme, or through activ
tion with a phosphate group, or through conformation
change of the enzyme powered at the release of the
cycle, the monomer is given free energy in excess of
bound form in the polymer. This step effectively changes
chemical potential of the monomer to its new, higher val
in isolation from the~unactivated! cytoplasmic population.

~3! The enzyme, in lowering the energy barrier to bindin
allows the monomer to hop into the bound form. Possibly
some combination with the next step, this is the rejection
the monomer to the higher-energy reservoir.

~4! Finally the now (n11)-mer is advanced along th
active region of the enzyme, whose configuration is th
returned to one that can accept another monomer from s
tion. Conformational~elastic! energy may or may not be
added to the enzyme in this step, which in either case ca
the return of the monomer-binding site to the potential of
solution.

IV. MODELING ENGINE AND RESERVOIR DYNAMICS:
THE BLOCH CRYSTAL ENGINE

A linear model illustrating the phenomena discussed up
this point is shown in Fig. 3. It is built from an even numb
M of linear, quantum harmonic oscillators with identic
level spacing. Two oscillators are considered to be the
gine, and the remainingM22 are collected into symmetric
‘‘left’’ and ‘‘right’’ reservoirs. The reservoirs have a litera
interpretation as plates of a capacitor, and the resonator a
inductor, in a dilute-Fermi-gas limit where fermionic stati

FIG. 2. The Carnot refrigeration cycle~a!, and its chemical
equivalent~b!. T is the temperature of the working volume~and of
any reservoir to which it momentarily couples!, andS is its entropy.
Alternatively, N is the number of some particle species conduc
through the chemical refrigerator, andm is the chemical potential of
any reservoir with which it would instantaneously be in equili
rium. Numbers on the legs of the chemical cycle correspond to
stages in enzymatic polymerization detailed in the text.
4-5
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tics of electrons can be ignored. Definitions and notation
the quantum harmonic oscillator are reviewed in Appen
A, along with a number of manipulations of scalar and vec
operators that will be used in the following construction
Definitions of coarse grainings, and the forms that will
applied to this system, are given in Appendix B.

Elementary excitations along orthogonal axesx and y in
the engine are created by two raising operatorsax

† and ay
† ,

respectively. These correspond to the~second-quantized!
low-energy effective description of the thermoacoustic
gine in Ref.@21#. The Hermitian conjugate operators toax

†

anday
† are calledax anday , and the excitation number op

erators aren̂x andn̂y . In terms of these, the free Hamiltonia
for the engine is just its total excitation number

H0
E[n̂x1n̂y . ~3!

The reservoirs are given slightly more structure, as Blo
crystals, with the nearest-neighbor Hamiltonian

H0
L[ (

m50

ML21

n̂m
L 2

g

2
@am

†Lam21
L 1am

†Lam11
L # ~4!

for the left reservoir, and similarly forL→R. m is periodi-
cally identified, andML5MR, so thatM52ML12.

The creation operator for a normalized wave vector s
in the L reservoir is

ak
†L[

1

AML (
m50

ML21

e2 ikmam
†L , ~5!

FIG. 3. Diagram of the Bloch-crystal engine, to be compa
with Fig. 1. Big circle corresponds to the resonator; its two exc
tions are the fundamental-mode phonons of the low-energy ef
tive theory. Axes of symmetry for spatial standing waves
markedx andy, and axes of spatial standing waves coupled to
reservoirs are at anglesu0 and2u0 relative tox. Spatial modes in
each reservoir are indexedm50, . . . ,ML,R21 in each of left and
right sectors. There is a number-exchange coupling between s
ing waves in the resonator and them50 spatial oscillator of the
corresponding reservoir.
04611
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so that in terms of the associated number operators

H0
L[(

k
n̂k

L~12g cosk!, ~6!

with sum overkP(0, . . . ,ML21)32p/ML, and similarly
for L→R.

The coupling of the engine to the reservoirs is a simplifi
version of the coupling used for real thermoacoustic engin
although the latter, like lasers, have a nonlinear gain eq
tion. As noted in Sec. III, since the information represen
in the current itself is of interest, the form of the gain equ
tion leading to it may be changed in this case without los
the effect. A convenient form comes from the interacti
Hamiltonian

H int52
g

A2cosu0

@au0

† a0
L1a2u0

† a0
R1H.c.#

52g@ax
†a0

S1tanu0ay
†a0

A1H.c.#, ~7!

where the standing-wave excitations at angles6u0 are cre-
ated by the operators

au0

† [cosu0ax
†1sinu0ay

† ~8!

and

a2u0

† [cosu0ax
†2sinu0ay

† , ~9!

respectively. Subscript 0 on the reservoir operators den
spatial index m50, sincek50 would make the Bloch ring
pointless.g is the coupling strength of the engine to th
reservoirs, and may be taken small or of order unity, as
sired.

The operators in the first line of Eq.~7! do not have or-
thogonal canonical commutation relations at generalu0, so
the second line gives an expansion in operators that do,
symmetric and antisymmetric lowering operators in the r
ervoirs defined as

a0
S[

a0
L1a0

R

A2
~10!

and

a0
A[

a0
L2a0

R

A2
. ~11!

Everywhere H.c. denotes Hermitian conjugate of the ter
that appear explicitly.

The closed engine/reservoir system evolves microsc
cally under the Hamiltonian

H5H0
E1H0

L1H0
R1H int . ~12!

There is a spatial basis$x,y,mL,mR%, which naturally de-
composes into components on which heterogeneous env
mental couplings can be imposed.~Alternatively one could

d
-
c-
e
e

d-
4-6
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use$x,y,kL,kR%.! The excitations in these bases differ fro
excitations in the eigenstate basis by a unitary transforma
of the raising and lowering operators, and this property le
to nontrivial flow of particles among the spatial or wa
number projections.

A. Preparation of heterogeneous thermal initial conditions

A convenient separation of scales can be achieved,
tween the fundamental oscillator frequency~set to one in
these units!, and the frequency of particle exchange, by ta
ing the angleu0 very close top/4 in the operating state. I
will be assumed below thatu0,p/4, as in Fig. 3.

This coupling admits a very convenient way to impo
heterogeneous thermal initial conditions, because atu0
5p/4, the engine operators are orthogonal, with canon
commutation relations. Therefore one can imagine star
with a ‘‘preparation coupling’’

H int, prep52
g

A2cosu0

@al
†a0

L1ar
†a0

R1H.c.#

52
g

A2cosu0

@ax
†a0

S1ay
†a0

A1H.c.#, ~13!

whereal
† and ar

† are defined as in Eq.~8! and Eq.~9!, re-
spectively, except withu0→p/4. The entire left and right
sectors will then decouple, each can be prepared in a the
state at an independently specified temperature, and the
sity matrix for the ensemble will then be the product of de
sities for the two sectors. Coupling can then be introdu
with perturbative strengthn[g(12tanu0), by simply rotat-
ing the reservoir contact points slightly toward thex direc-
tion.

The easiest case in which to understand the origin of p
ticle transport, and indeed the only case where time-lo
measurements will lead to reversible dynamics, isML5MR

51. Letting the Bloch exchange couplingg→0, the whole
preparation Hamiltonian can be written in matrix form as

Hprep5@al
† a0

L†
#F 1 2g/A2cosu0

2g/A2cosu0 1 G F al

a0
LG

1@ar
† a0

R†
#F 1 2g/A2cosu0

2g/A2cosu0 1 G F ar

a0
RG .

~14!

Left and right eigenstate excitations are manifestly crea
by operators (al

†6a0
L†)/A2 and (ar

†6a0
R†)/A2, both with ei-

genvalues 17g/A2cosu0.
It is shown in Appendix C that thermal densities can

written in terms of Gaussian integrals over coherent sta
and the notationK is introduced for the kernel matrix of th
Gaussian integral. The eigenvalues ofK for homogeneous
thermal densities are the inverses of the mean occupa
numbers in the eigenstate basis. In the left and right pre
ration bases, these take the approximate forms at high
perature,
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K6
L [ebL(17g/A2cosu0)21→bL~17g/A2cosu0! ~15!

and

K6
R [ebR(17g/A2cosu0)21→bR~17g/A2cosu0!. ~16!

If g/A2cosu0 is chosen close to one, the population in ea
sector can be dominated by the symmetric~low-frequency!
eigenstate to any desired degree, reducing the analysis o
problem to that of single-particle thermal states. After all t
properties of that limit are understood, the case of generag,
etc., can be examined.

Not only x and y excitation numbers, but also those inl
andr and various traveling-wave bases will be of interest
the analysis that follows. Therefore it is useful to remark th
all of these bases differ from each other only by unita
transformations of the creation operators, and it is shown
Appendix D that the marginal distributions of any Gauss
coherent-state densities are exactly thermal in any s
bases. Further, the expected mean excitation numbers are
the diagonal elements ofK21 in the corresponding represen
tation @Eq. ~D1!#, so it is useful to define mean-excitatio
matrices

n̄L[~KL!21 ~17!

and

n̄R[~KR!21, ~18!

from which all the engine excitation numbers can be deriv
by unitary transformation.

B. Single mode-driven oscillations

It was actually possible to diagonalize the preparat
Hamiltonian in either left and right sectors, or in the ba
$x,S0 ,y,A0%. However, the thermal initial conditions of in
terest are only diagonal in the left/right basis, whereas
eigenstates with u0,p/4 require diagonalization in
$x,S0 ,y,A0%. The matrix representation of the dynamic
Hamiltonian is

H5@ax
† a0

S†
#F 1 2g

2g 1 GFax

a0
SG1@ay

† a0
A†

#

3F 1 2g tanu0

2g tanu0 1 GF ay

a0
AG , ~19!

and its eigenstate excitations are created by (ax
†6a0

S†
)/A2,

with eigenvalue 17g, and (ay
†6a0

Y†
)/A2, with eigenvalue

17g tanu0.
No difficulty is incurred because the basis in which t

initial thermal projection factors is different from the eige
state basis. Appendix E shows that, when the coherent-s
representation of thermal density matrices is used forL and
R sectors, the density which is their product simply defin
an M-dimensional kernelK, in which the factor matricesKL

and KR become diagonal blocks@Eq. ~E6!#. The partition
4-7
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ERIC SMITH PHYSICAL REVIEW E 68, 046114 ~2003!
function has a basis-independent definition, from which
expected excitation numbers at any time are easily extra
by suitable similarity transform ofK or its inverse,n̄.

The t50 transformation from $ l ,L0 ,r ,R0% to
$x,S0 ,y,A0% operators puts the mean number matrix in t
representation

n̄0[
1

2 F n̄L1n̄R n̄L2n̄R

n̄L2n̄R n̄L1n̄RG , ~20!

where the blocksn̄L and n̄R are defined by Eq.~17! and Eq.
~18!, respectively.

Since the eigenstates advance their phases accordin
the eigenvalues of Eq.~19!, n̄ evolves by similarity trans-
form with the diagonal time-evolution operator. Because
the interaction Hamiltonian used to define the preparation
the sectors, the full eigenstates are superpositions of the
tor eigenstates with the same engine/reservoir symmetr
asymmetry. In other words, in the eigenbasis, the block f
tors n̄L and n̄R are themselves diagonal, and the only no
identity contribution to the similarity transform comes fro
the energy difference matrix

EA2ES5nF1

21G . ~21!

Supposing that the coupling between theL andR sectors
was turned on att50, the number matrix at timet, called
n̄t , is just

n̄t[
1

2 F n̄L1n̄R ~ n̄L2n̄R!e2 i (EA2ES)t

~ n̄L2n̄R!ei (EA2ES)t n̄L1n̄R G .

~22!

It is clear that under transformation back to$ l ,L0 ,r ,R0%, the
mean l and r number densities oscillate with frequencyn
between the values induced by the two initially imposed te
peratures. Thex andy mean numbers meanwhile remain co
stant at the average ofl and r means.

C. Bases for entropy accounting

The ML,R51 model is intermediate between the simpl
ity of an equilibrium system, and the complexity of th
ML,R.1 models, which though formally reversible by th
definition given in Sec. II, have classical state variables t
are difficult to extract from late-time measurements, a
whose definitions do not readily generalize beyond this
ample. AtML,R51, one can see why restricting to equilib
rium state variables is inadequate, while keeping the true
of state variables time local~though time dependent!, so that
they have a natural description as indices to macrohistor

It is shown in Appendix D that the marginal distribution
for which matrix ~22! gives mean numbers are all exact
thermal, in any excitation basis, at anyt. Each marginal has
a well-defined effective temperature, with the expected re
tion to its mean occupation number. Thus temperatures
modes contain all of the information restricting the ensem
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at any time. They are also, of course, redundant, sinc

well-defined set of temperatures exists in any basis forn̄t

related by unitary transformation to Eq.~22!.
The question of interest is when these temperatures a

a projection of this coupled system onto a product of eng
and reservoir components, in which classical properties
the components are sufficient to specify the constraints
the whole distribution. If there is always such a projectio
one is free to restrict to equilibrium state variables, and
sign them equations of motion as in the dissipative mod
@2#. Here one can show explicitly that, in terms of th

‘‘charge densities’’n̄l ,n̄r ,n̄x ,n̄y ,n̄m
L ,n̄m

R , that will not be
possible. It will be possible to project into ‘‘system’’ an
‘‘environment’’ components, but in the system projection o
must admit as state variablescurrent densities as well.

The entropy of the marginal distribution of any identical
thermal mode is defined in terms of the mean occupa
number in Eq.~C6!. The condition that occupation numbe
measured in a projection onto components be proper s
variables is equivalent to the condition that the sums of
tropies computed from them equal the true entropy of
distribution over microhistories. It is clear why sums of ma
ginal entropies need not be conserved in general. The op
tion of factoring into components~replacing joint distribu-
tions with products of marginals! is a coarse graining, which
can lose information about system/environment correlatio

The condition of thermal reversibility of a factored sy
tem, taken as a commonplace in equilibrium systems, is s
in dynamical systems to place a delicate requirement on
choice of state variables, even when the set of microhisto
is unchanged over time. It is a condition that a sum of ent
pies after marginalization be conserved in time, as the
namics changes the relation of the distribution to the com
nent projection.

In the example here, the marginals do recover a con
vation law asg/A2cosu0 is taken close to one. In that limit
the low-frequency states account for essentially all of
population in any basis, and there is aredundancyof the
information contained in the reservoirm50 and the engine
states. It then becomes possible to use reservoir marg
distributions asproxies for part of the order in the engine
allowing engine bases to be explored to account for any
ditional order not measurable in the factored reservoir m
ginals alone. Note that this limit is not necessitated by a
thing fundamental; it is used to compensate for the prejud
that, because the marginals are thermal, the constraints
be inferred from their temperatures alone.

Quantum mechanically, standing-wave and travel
wave excitations are not independent in an engine with o
two degrees of freedom. However, classically, there may
information represented in the mean excitation number
one basis, which is only contained in the joint probabiliti
across different excitation numbers in the other basis. T
exploring the various number bases in the engine will be
key to recovering an approximate description of the co
plete constraints on the distribution of interfering m
crostates. The necessary excitations beyond those alr
considered are created by the operators
4-8
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a1
† 5

ax
†2 iay

†

A2
~23!

and

a2
† 5

2 iax
†1ay

†

A2
. ~24!

It follows from the commutation relations that all of

n̄x1n̄y5n̄l1n̄r5n̄0
L1n̄0

R5n̄11n̄2 ~25!

are equal and time independent, and from Eq.~22! that n̄x

2n̄y[0. Unitary transformation to thel ,r ,L0 ,R0, or from
these to the1,2 bases at any time, gives

~ n̄l2n̄r ! t'~ n̄l2n̄r !0 cosnt ~26!

and

~ n̄12n̄2! t'2~ n̄l2n̄r !0 sinnt ~27!

from Eq. ~22!. Furthermore, because the populations of b
engine and reservoirL andR modes come entirely from th
interference of the same pair of states, (n̄0

L2n̄0
R) t'(n̄l

2n̄r) t . This is how the choice of coupling makesn̄0
L andn̄0

R

informational proxies for thel andr coherence in the engine
Note thatn̄12n̄2 , from an equilibrium point of view, is

a current variable, not a charge variable. It is necessary
Eq. ~27! to track the constraints on initial temperatures
times nt5(2 j 11)p for integer j, and yet is not within the
set of equilibrium densities used as default for state v
ables.

At high temperature, the thermal entropy of Eq.~C6! ~for
any one component! is asymptotically equal to the logarithm
of the mean excitation number, so to second order in fluc
tion amplitudes,

d

dt
@S~ n̄0

L!1S~ n̄0
R!#Þ0, ~28!

and also

d

dt
@S~ n̄1!1S~ n̄2!#Þ0, ~29!

though total excitation numbers in the two sectors are p
served independently. The phase offset between the two
cillations, however, implies that to the same order

d

dt
@S~ n̄0

L!1S~ n̄0
R!1S~ n̄1!1S~ n̄2!#'0. ~30!

Under almost any weakening of the restrictions in t
example, the basis used here will no longer yield a revers
description, and the informational entropies will be obscu
by a larger background of fluctuations due to inadequacie
the coarse graining. However, with some sensitivity to
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structure of the dynamics, it will generally be possible
preserve factorability if one can use time-nonlocal measu
ments. First, though, having understood the origin of a n
for current-state variables, it is of interest to extract the cl
sical and self-organizational interpretations of engine cycl
for the ML,R51 case.

D. The heat flow interpretation

Entropy change always accompanies the transfer of e
tations. It is therefore possible to assign an entropy flow
various particle currents, which then takes on the interpre
tion of heat in classical thermodynamics. To show that t
simplified model is appropriately interpreted as an engi
reservoir system, it is necessary to show that the heat fl
obey those classically associated with engine cycles.

Because the model has been constructed with a topol
cal correspondence to the thermoacoustic case, there
natural phenomenology of thermoacoustic engine trans
to map to it. The traveling-wave states1 and2 correspond
to the transporting excitations. Classically, the entropy tra
ported from theR to the L reservoir is proportional to the
excess number of1 over 2 excitations, while the transpor
from L to R is proportional to the2 over 1 excess. Mean-
while, the rate of growth of the1 excitation number is pro-
portional to the temperature difference ofR overL, while the
growth rate of2 is proportional to theL2R temperature
difference. This model is linear, so there will not be the a
ditional proportionality of1 and2 growth with the current
amplitudes of1 and2.

Only the total particle flow into reservoirs will be directl
constrained by the local interaction Hamiltonians. Howev
at ML,R51, n̄0

L→n̄L, n̄0
R→n̄R, while also (n̄0

L2n̄0
R) t'(n̄l

2n̄r) t . By Eqs.~26! and ~27!,

d

dt S n̄L2n̄R

n̄L1n̄RD 5nS n̄12n̄2

n̄11n̄2
D ~31!

and

d

dt S n̄12n̄2

n̄11n̄2
D 5nS n̄R2n̄L

n̄R1n̄LD . ~32!

Equation~31! assigns particle transport between the r
ervoirs to an invariant number}n per traveling-wave cycle.
Since n̄12n̄2 , the net current, is also the mean numb
constraint biasing the marginal distribution in the reserv
away from the equilibrium Gibbs distribution, it is the con
straint on which theorder growth in the engine depends
Equation~32! correctly recovers another aspect of the re
thermoacoustic phenomenology: that the growth of mean
ergy in the coherent state is proportional to the driving te
perature difference, as for an engine with fixed entropy tra
port per cycle it must be.

To infer local particle flows between the engine and t
reservoir, it is natural to split the interaction Hamiltonian

H int[H int
L 1H int

R ~33!
4-9



th

w

is
o
e

on-
nse

ric

port

In
ic
a-

heo-
The
n
the
to

n
in,

mal
cor-
ent.
one
re-

ro-
ine,

ERIC SMITH PHYSICAL REVIEW E 68, 046114 ~2003!
with

H int
L [2

g

A2cosu0

@au0

† a0
L1H.c.# ~34!

and

H int
R [2

g

A2cosu0

@a2u0

† a0
R1H.c.#. ~35!

In the Heisenberg picture, this leads to the expression for
change in the number of particlesnL, due to interaction with
n1 , as

dn̂1
L

dt
[ i @H int

L ,n̂1#, ~36!

and the change innR from interaction withn1 as

dn̂1
R

dt
[ i @H int

R ,n̂1#. ~37!

The sum of operators interacting withn1 satisfies the engine
conservation law

dn̂1
L

dt
1

dn̂1
R

dt
5 i @H,n̂1#52

dn̂1

dt
, ~38!

while the sum fornL satisfies the reservoir conservation la

dn̂1
L

dt
1

dn̂2
L

dt
5

dn̂L

dt
. ~39!

Both conservation laws remain true at generalML,R, and
there are symmetric constructions for the (2) andR sectors,
respectively.

Because the entropy change for a thermal distribution
function only of the mean excitation number, the splitting
particle currents allows a similar splitting of entropy chang
into ‘‘flows.’’ In a large-n̄ limit, where

dS~ n̄!

dn̄
→ 1

n̄
, ~40!

the change in theL reservoir entropy from1 currents is

dS1
L

dt
[

^ i @H int
L ,n̂1#&

n̄L
~41!

and similarly for theR reservoir entropy

dS1
R

dt
[

^ i @H int
R ,n̂1#&

n̄R
. ~42!

By construction,
04611
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dS1
L

dt
1

dS2
L

dt
5

dSL

dt
, ~43!

and likewise forL→R.
Since the whole-system sum of marginal entropies is c

served only to second order in fluctuations, it makes se
only to expand Eqs.~41! and ~42! to that order, giving

d

dt
~S1

L 1S1
R !52

2

~ n̄L1n̄R!

dn̄1

dt
22

~ n̄L2n̄R!

~ n̄L1n̄R!2

3^ i @~H int
L 2H int

R !,n̂1#&. ~44!

In the g/A2cosu0→1 limit that is dominated by a single
mode in bothx andy, the operator algebra of Eq.~33! gives
the simplified relation

i ^@~H int
L 2H int

R !,~ n̂11n̂2!#&5n~ n̄12n̄2!, ~45!

plus error terms of order 12g/A2cosu0 relative to the terms
that are kept. A similar expansion for the antisymmet
number sum gives

i ^@~H int
L 2H int

R !,~ n̂12n̂2!#&

52g@~ n̄y11/2!2tanu0~ n̄x11/2!#. ~46!

Using Eq.~40! for n̄1 , it follows that

d

dt
~S1

L 1S1
R !52

dS1

dt
12gS n̄L2n̄R

n̄L1n̄RD
3

tanu0~ n̄x11/2!2~ n̄y11/2!

n̄x1n̄y

. ~47!

Classical Carnot’s theorem would have Eq.~47! identically
zero, because for a reversible process the entropy trans
out of R by (1) would exactly equal that intoL, so the sum
of two inward entropy transports would have to vanish.
this problem, Eq.~47! has both symmetric and antisymmetr
nonzero terms. The symmetric term is precisely the inform
tion ~negative of the change in entropy! stored in the1
standing wave, the necessary correction to the classical t
rem needed to treat the current itself as a thermal object.
second term is totally6 antisymmetric, and describes a
artificial entropy transport which exactly cancels between
two traveling waves, and thus is never actually delivered
either reservoir, or to the engine modes either.

At this point it is useful to make a formal distinctio
between those entropies considered informational in orig
and those conventionally regarded as thermal. The ther
entropies that pass through an engine come from those
relations necessary to specify the state of the environm
They are originally projected onto the measurements of
reservoir and later transferred to the other’s, but never
solved in the engine at any point. The informational ent
pies are the uncertainties of the actual state of the eng
4-10
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SELF-ORGANIZATION FROM STRUCTURAL REFRIGERATION PHYSICAL REVIEW E68, 046114 ~2003!
which may change if the engine’s composition is measu
as part of the system characterization.

The informational entropy change is the sum2dS1 /dt
2dS2 /dt, from Eq. ~44! and its (2) counterpart. By Eq.
~27!, it is quadratic in fluctuations, and it has natural inte
pretations in terms both of self-organization and of flow
The reduction inS11S2 is just the knowledge gained abo
the system from the constraint on its current. A state w
zero mean current maximizes what would normally be co
puted as the ‘‘equilibrium’’ free energy. The imposition of
mean current as a constraint would produce just the distr
tion and entropy computed here as its maximum-ignora
solution. In this case, a constraint on the6 current excess
arises through the dynamics, as the expression of the in
reservoir heterogeneity, and so appears self-generated
the perspective of the time-local coarse graining.

Meanwhile, the thermal entropy passing through the
gine is ~one half of! the antisymmetric combination

d

dt
~S1

L 2S1
R !5

2

~ n̄L1n̄R!
^ i @~H int

L 2H int
R !,n̂1#&

12
~ n̄L2n̄R!

~ n̄L1n̄R!2

dn̄1

dt
. ~48!

Making use of the same operator identities and single-m
limits as above, this exchanged entropy evaluates to

d

dt
~S1

L 2S1
R !522g

tanu0~ n̄x11/2!2~ n̄y11/2!

n̄x1n̄y

1nS n̄12n̄2

n̄11n̄2
D 2nS n̄L2n̄R

n̄L1n̄RD 2

. ~49!

The first term is again a6-antisymmetric combination asso
ciated with nonuniform coupling to the standing waves.
could be set to zero with suitable populations ofx andy, but
never actually accumulates anywhere and is essentially
artifact. The leading-order entropy actually exchanged is
ear in n̄12n̄2 , thus obeying the thermoacoustic Carnot
lation. The quadratic correction is of the same order as
informational entropy, and describes how it is drawn diff
entially from the two reservoirs.

This model, then, does strictly what was described abo
When an appropriate basis is specified, the engine trave
modes appear to transport information about the environm
from one reservoir to the other in the process of suppor
particle currents. When the temperatures differ, it is not
ergy, but thermal entropy whose flux is conserved at lead
order. The engine uses the resulting excess of energy to
ment its own structure, or vice versa. When engine orde
growing, though, classical Carnot’s theorem is not exac
respected. The entropy the engine rejects at the l
temperature reservoir is slightly greater than what it take
at high temperature, by just the change in its own structu
information.
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E. More modes and nonlocal state variables

WhenML,R.1 or g/A2 cosu0!1, there is no way to in-
duce even quadratic-order entropy conservation, for any s
of marginal entropies computed only from time-local me
excitation numbers. While the sum of reservoir entropies
constant at linear order in fluctuations, the ‘‘exchange
thermal entropy from each reservoir component is prop
tional to a separate traveling current in the engine. Th
currents all have different effective temperatures at any t
t, even though their distributions combine to form a therm
distribution for total traveling current, which may have y
another, arbitrarily related, temperature. The resulting pict
is one in which both classical Carnot’s theorem and all
formational entropies are lost against a background of
tropy fluctuation created by inadequacies of the coarse gr
ing. At early times, the entropy change is always an increa
recovering the usual picture of an irreversible process,
shown in Fig. 4.

This case illustrates the distinction between reversibi
defined by conserved indexing of microhistories, as in S
II, and defined by the limitations of the experimenter. Und
the former, the system is identically reversible, while und

FIG. 4. Changes in total entropy from their initial values (dS),
in the combined engine and reservoirs~upper curves!, and in trans-
ported entropy per degree of freedom (dSL2dSR)/(ML,R11)
~lower curves!, versus time in units of cycle periods of the fre
oscillator. Model values areML,R530, g50.3, g50.1, and
tanu050.995 orn5531024. Initial conditions areT0

L51100, T0
R

5900, in energy units where the free oscillator energy is 1. So
curves use sums of thermal entropies for standing-wave occupa
number ~k! states in the reservoirs, while dashed curves
position-occupation statesm. The6 basis, which is well behaved a
ML,R51, is used in the engine in all cases. The whole syst
entropy depends strongly on the representation of the reservoir
the k basis, there is no entropy change in the transverse stan
waves, which do not project on them50 coupling, while them
basis is repopulated dynamically at every position, and thus sh
larger overall entropy increase. Thetransportedentropy is indepen-
dent of this distinction to the accuracy of the simulation, and m
be regarded as a property of the state of the engine. Despite
complex, apparently irreversible behavior of all of these entro
curves, the temperatures corresponding to thek occupation numbers
oscillate harmonically betweenT0

L andT0
R , for all time.
4-11
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the latter, it would be called irreversible. Yet if one were
Fourier transform the time series of the component occu
tion numbers, these could be decomposed into the slo
changing occupation numbers of thek states, which togethe
are sufficient state variables for the system at generalML,R.
Further, while such a decomposition cannot be madelocally
in time, it can be performed within a finite time interval fo
any fixedML,R. Thus a more sophisticated experimenter@42#
would recognize the actual reversibility of the ensemb
while a less sophisticated one would not.

The late-time behavior of Fig. 4 illustrates well the lim
tations of phenomenological treatment of entropies. Ther
no violation of the second law implied by the significa
decreases of the coarse-grained entropies, since thes
loose constraints on the true uncertainty about the distr
tion. Conversely, a treatment thatdefinedentropy functions
solely to be spatially and temporally local, and monoto
cally increasing~as in Ref.@8#, Secs. 5.6 and 5.7!, to satisfy
the second law as if it were a statute, would be a measur
something else besides uncertainty, as entropies are pro
defined to be@35#.

V. GENERALIZING THE TIME-INDEPENDENT ENTROPY

The high-temperature limit of the linear oscillator mod
has been explicitly constructed with a partition function
distinguishable from that for an equilibrium system, exce
in the interpretation of its parameters as temperatures~no
longer having only one value! or occupation numbers~hav-
ing explicit dynamics!. The logarithm of the partition func
tion must then yield an effective potential generalizing t
Helmholtz equilibrium free energy to one for a microcano
cal ensemble ofhistories, in which the constraints from het
erogeneity are explicit as in Sec. II.

At this point, it is convenient to introduce some cas
specific notation, and to correct a technical omission that
been committed up to now, in computing entropies from
projections of occupation numbers onto engine or reser
components alone, which differ by factors of 2 from the tr
occupation numbers of the eigenstates responsible for
oscillation. At g/A2 cosu0→1, the sum of entropies com
puted in this way differs from the true system entropy
constant offsets; ln 2 in the high-temperature limit, so th
conditions for reversibility and results about entropy tra
port hold in either variables. However, in order to use
real eigenvalues of the mean-number matrix, it will be
sumed that the experimenter has multiplied the compon
occupations by 2, and performed the trivial integration o
the unpopulated state amplitudes to obtain a number ma
with only nonzero eigenvalues. The trace of this projec
matrix, which gives the total occupation number, is then
noted n̄T[n̄x1n̄y , while the time-independent differenc
n̄xy[n̄x2n̄y .

The differences, betweenl andr or 1 and2 sectors, are
functions of time, and as such are not suitable order par
eters if not so referenced. Therefore letn̄lr ,0[n̄l(0)
2n̄r(0), denote either the value of the number difference
a reference timet50, or equivalently the wholefunctionfor
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which that difference is the sole constraint. Similarly,
n̄12,0[n̄1(0)2n̄2(0) denote an initial value constraint fo
(6), or the whole history that follows from that constrain

In terms of these, the projection of the matrixn̄ onto the
eigenmodes with nonzero population, in anxy basis for the
raising and lowering operators, becomes

n̄05
1

2 F n̄T1n̄xy n̄lr ,01 i n̄12,0

n̄lr ,02 i n̄12,0 n̄T1n̄xy
G . ~50!

Since these occupation numbers are already true eigenva
even though they are referenced to projections onto en
states, they account for all system correlations, so reser
occupation numbers need not be listed again.

The entropy of the most general configuration constrain
only by number density, and represented with a Gauss
coherent ensemble, is given by Eq.~C12! in terms of n̄ of
Eq. ~50!. If an averageb̄ value is defined as

b̄[
bL1bR

2
, ~51!

it is possible to write the equivalent of an equilibrium fre
energy for the heterogeneously constrained system as

b̄A[bLn̄L1bRn̄R2S. ~52!

Elementary algebra shows thatS is maximized, andA
minimized, atn̄12,050. Along this curve, the trace expres
sion ~C12! for S factors, and the free energy decomposes
the sum of equilibrium forms

b̄A→bLA0
L1bRA0

R. ~53!

In this sense, along a hyperplane of the possible class
configurations, the free energies look exactly like their eq
librium counterparts, even though the system is dynam
after t50.

A is minimized by an order parameter that refers to
time-dependent classical history. It is instructive to ask w
would be the closest approximation to this solution, obtain
if one were to exclude explicit time dependence from the f
energy. In this problem, that amounts to taking some st
projection ofA, and trying to interpret it as an equilibrium
free energy. The valueb̄ of Eq. ~51! was chosen so that onl
the heterogeneous Legendre transform pair, and the de
dence of the entropy on the time-varying order paramet
would be excluded from the static projection.

This choice of ‘‘effective’’ equilibrium temperature lead
to the expansion

A52n̄T2
1

b̄
Sstat1S bL2bR

bL1bRD 2n̄lr ,02
1

b̄
@S2Sstat#,

~54!

whereSstat[S(n̄T ,n̄xy,0,0). Equation~54! is the specific in-
stance of Eq.~2! for the linear-oscillator model atML,R

51.
4-12
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Now, the correct~dynamical! solution from Eq.~53! leads
to a total number of particles inx andy of

n̄T→
1

bL
1

1

bR
, ~55!

evenly divided between the two modes and time indep
dent. In contrast, direct minimization of the first two terms
Eq. ~54! gives the expected total number

n̄T→
2

b̄
5S 1

bL
1

1

bRD F12S bL2bR

bL1bRD 2G . ~56!

The result~56! is clearly inconsistent with thex and y par-
ticle numbers that would be observed, indicating that
static parts of Eq.~54! are not the ‘‘best’’ equilibrium ap-
proximation.

A better approximation could be obtained by setting 2b̄

51/bL11/bR and incorporating a constant term;n̄T(bL

2bR) into the ‘‘dynamic’’ corrections, so that the static pa
alone would give the correct value of bothx andy numbers
from Eq. ~56!. In that case, however, thel, r, 1 and 2
numbers would be equal, and the entropy higher than an
the best-characterized instantaneous entropies in the dyn
cal case.

This alternative between two mistakes is characteristic
the equilibrium interpretation of systems whose order
maintained by heterogeneous boundary conditions and
duced currents. For the naive mean intensive variable,
expected extensive variables are wrongly predicted. For
intensive variable that predicts the correct extensive valu
the predicted entropy is higher both than the true value~here
the matrix trace!, and than the function computed from th
measured values of the equilibrium state variables. Sec
VI will mention some important cases of such misanalys

Time- and temperature-dependent potentials

Equation~54! may be evaluated as a generalized Hel
holtz free energy of configurations at any time, because
argumentsn̄lr ,0 , n̄12,0 refer to complete histories, whos
projection onto all such configurations are known from E
~22!. In a less trivial system, where the evolution of the cla
sical state variables could not be so simply derived, it wo
be desirable to have an extremization principle that de
mined the equation of motion, or equivalently the transf
mation rule for the effective potential.

Such a dynamical principle is derived in Sec. 1 of Appe
dix F, from the partition function of the preparation, and t
time-loopS matrix that defines the microscopic evolution
the eigenstates. A hybrid effective potential is found, who
real part is a generalized Helmholtz potential for the init
conditions, and whose imaginary part is a background-fi
effective action for the evolution forward from them. Th
effective potential is slightly different from Eq.~54!, being a
Legendre transform in the exponentials of the inverse te
peratures, rather than in the inverse temperatures themse
which is conveniently performed on the Gaussian-cohe
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representation of the partition function. The initial conditio
it specifies are all the same, though. The construction of S
1 of Appendix F gives a general relation between the unc
tainty measures over histories examined here, and the cl
cal action from which one generally expects to derive reve
ible dynamics.

VI. DISCUSSION

A. Relation of entropies to complexity

This paper treats the formation oforder in reversible sys-
tems and, when a component-projected set of state varia
can be found, uses the decrease in entropy in some com
nent as themeasureof its increase in order. In cases like th
thermoacoustic engines, where the order accompanies th
lection of a phase for the classical wave, creation of or
accompaniesinnovation ~emergence of the phase as a st
variable!, and with thatcomplexity. It is important to note,
though, that order as measured by a decrease in entropy
not necessarily imply increase in complexity@18#. Once a
phase emerges as a defined property of the ordered sys
further increase of the amplitude of the condensed wave o
increases order extensively in the energy, without any
companying process of emergence that could be interpr
as innovation.

B. Biochemistry and ergodicity

Many treatments of entropy in SO have been motiva
by Schrödinger’s book@36# which proposes that living sys
tems reject entropy to an environment, in apparent violat
of the second law~since the living interior is already mor
chemically organized!, and that this is what distinguishe
living from nonliving matter. Analysis of SO in terms o
Carnot transport shows clearly how this conclusion can
unwarranted. Both the environment~the reservoirs! and the
system~the resonator modes!, are themselvescompositesys-
tems. They can sustain either charge or current separa
precisely because, uncoupled, there is no conduit for re
ation of either without the other. This kind of coupling
exactly the condition of the cellular interior and its chemic
environment, with the cell~or mitochondrial! membrane me-
diating much of the energy transfer. The dynamics of engi
can reject entropy to the environment while lowering fr
energy, but not relative to those states that the system
environment could attain independently.

Said more generally, while thejoint states of the system
~the cellular interior! and the environment may evolve e
godically, thus permitting the substitution of time for e
semble averages, thecomponentprojections of those state
do not evolve ergodically independently of each other. Th
it is important to separate the intrinsic uncertainty of an e
semble~such as the set of viable molecular arrangements
particular cell!, from ergodicity of the dynamics, which ma
be very different for parts than for the whole.

Another feature of the model used in this paper was s
cifically chosen to match the energetic structure of photos
thetic life. Without biochemistry, the electronic transitions
terrestrial matter excitable by visible light are largely u
4-13
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coupled by quantum selection rules from the vibrational a
rotational excitations of the 300 K ambient microwave sp
trum. This state corresponds to the preparation condition
the model, where orthogonal engine states~the6u0 standing
waves! are, respectively, in equilibrium with their reservoi
at different temperatures, but induce no coupling between
reservoirs. The emergence of biochemistry solves the d
cult problem of overcoming quantum selection rules w
high throughput, converting visible photons to redox coup
@37#, whose relaxation in steady state ultimately reradia
entirely in the vibrational and rotational bands.

C. Generalized flow ground states

It has been demonstrated in this paper that currents ca
classical state variables, and that, in general, they are
conjugate extensive variables to heterogeneous tempera
or other thermal potentials imposed by the environment. I
natural to call the extrema of these dynamical effective
tentialsgeneralized flow ground states. They have the same
relation to microhistories as ground states have to config
tions in equilibrium, namely, as minimal sufficient statisti
@17#. When they can be computed, they have the impor
feature ofquantifyingthe energetic preference for states a
function of flow variables, as it has so usefully been co
puted for states in equilibrium.
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APPENDIX A: HARMONIC OSCILLATOR DEFINITIONS
AND NOTATION

This appendix establishes definitions and notation
one-dimensional~scalar! andM-dimensional~vector! simple
quantum harmonic oscillators. Special attention is given
coherent states, and convenient ways of constructing the
the vector case.

1. One-dimensional oscillation

The algebra of the linear, one-dimensional quantum h
monic oscillator is generated by a raising operatora†, and its
Hermitian conjugate lowering operator,a @38#. These are
normalized by the commutation relation

@a,a†#51. ~A1!

In terms of these the position operator is

x̂[ 1
2 ~a1a†!, ~A2!

and the momentum operator

p̂[
i

2
~a2a†!. ~A3!
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The number operator is defined as

n̂[a†a. ~A4!

The interpretation ofa†,a as creation and annihilation opera
tors @24# will be natural in describing the effective theory o
engines orLC circuits, in which casex̂ and p̂ become the
field operator and its conjugate momentum.

The one-particle vacuum state is defined by the opera
au0&[0u0&, and the eigenstates of the number operator

un&[
~a†!n

An!
u0&. ~A5!

The commutation relation~A1! then gives

n̂un&[nun&. ~A6!

A scalarcoherent stateis defined for any complex numbe
j as

uj&[e2uju2/2(
n50

`
jn~a†!n

n!
u0&[e2uju2/2(

n50

`
jn

An!
un&.

~A7!

It is an eigenstate of the annihilation operator, with

auj&[juj&. ~A8!

From the definitions of the position and momentum ope
tors, it follows that the expectations

^jux̂uj&5Re~j! ~A9!

and

^ju p̂uj&5Im~j!. ~A10!

The coherent states correspond to ‘‘classical’’ wave pack
under the correspondence principle, and the expectation
ues ~A9! and ~A10! evolve according to the equations o
motion of a classical simple harmonic oscillator.

The coherent-state expectation of the quantized versio
a classical Hamiltonian is

^jux̂21 p̂2uj&5^jun̂uj&1 1
2 5uju21 1

2 . ~A11!

The expected excitation number isuju2. Excitation number in
coherent states is Poisson distributed, with the probability
numbern in statej defined and evaluated as

Pj~n![u^jun&u25e2uju2 uju2n

n!
. ~A12!

2. Oscillation in more than one dimension

Vector simple harmonic oscillators are defined by rais
and lowering operators with subscriptm, which create exci-
tations independently in some numberM of dimensions. The
vector ground state will be denoted as before, and eigens
of the vector number operator are now indexed by a vec
4-14
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valued excitation number, which will again be denotedn.
With proper contraction rules of row with column vector
this will create no confusion, because the vector oscillato
an exact formal extension of the scalar case.

Vector number states are created by the product of rai
operators

un&[ )
m51

M
~a†!nm

Anm!
u0&. ~A13!

Coherent states are indexed by a vectorj with complex co-
efficients, and created from the vacuum by

uj&[ )
m51

M

e2ujmu2/2 (
nm50

`
~am

† jm!nm

nm!
u0&. ~A14!

The basis of excitations indexed bym is calledorthogonal
if raising and lowering operators at differentm commute. In
an orthogonal basis, it is very convenient to define the c
traction aj

†[am
† jm as the raising operator for an excitatio

along directionj. These may or may not be canonical
normalized, depending on the value ofuju2. The reason to
introduce them is that the multinomial expansion

~aj
†!N5 (

{ n;(m51
M nm5N}

N!

n1!, . . . ,nM! )m51

M

~am
† jm!nm

~A15!

implies the compact representation

uj&[e2uju2/2(
N50

`
~aj

†!N

N!
u0&. ~A16!

Thus any vector coherent state may be regarded as a s
coherent state created by the appropriate raising oper
The magnitude ofj occurring in the normalization is just th
scalar productuju2[j†j.

3. Basis transformation and time evolution

The full commutation algebra in an orthogonal basis
canonically normalized raising and lower operators is
fined to be

@am,an
†#5dn

m . ~A17!

The lowering operators may be transformed to any other
sis by a unitary transformationam[vm

mam, if the corre-
sponding raising operators undergo the inverse transfor
tion an

†[an
†vn

n . It then follows that in the new basis

@am,an
†#5vm

m@am,an
†#vn

n5vm
mvm

n5dn
m , ~A18!

so the transformed operators are again orthogonal and
nonically normalized. In the appendixes and the text, sup
script greek indices will be reserved for operators which c
ate eigenstates of some Hamiltonian, and subscript ro
indices will denote all other bases. Typically these will
bases in which a coupled system factors into engine
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reservoir components, and in which heterogeneous prep
tion conditions are block diagonal. Geometric objects likeaj

†

have component representations in any basis, and thus d
the conjugate transformation rules for the complex vectorj:
aj

†5an
†vn

mvm
mjm[am

† jm.
The number operator for excitations of Hamiltonia

eigenstatem is defined asn̂m[am
† am ~no sum!. The Hamil-

tonian assigns energy tom excitations as

@H,am
† #[Emam

† , ~A19!

and hence can be written

H5(
m

Emn̂m . ~A20!

States evolve in the Schro¨dinger picture under the time
evolution operatoreiHt . When this is applied to coheren
states, the subscriptt will be introduced as the time index, s
that

uj t&[eiHt uj0&. ~A21!

uj t& is created at any time by the same relation~A16!, with
time evolution introducing only the phase shifts

j t
m[eiEmtj0

m . ~A22!

APPENDIX B: DENSITY MATRICES
AND COARSE GRAININGS

It is useful to introduce the definitions of coarse grainin
and the examples that will be used in the text, because p
ability notation arises that will be used in later appendix
The starting definition is that, for$uc&%, some collection of
quantum states, any density matrix can be written as a
of outer products

r[(
c

rcuc&^cu. ~B1!

A coarse grainingof r is a map fromr to some other
density r̃ which averages out some of the information inr
@14#. A particular map used in the text will be called th
annularcoarse graining, defined in terms of a set of numb
statesun& by

r̃A[(
n

Tr~run&^nu!un&^nu[(
n

Pr~n!un&^nu. ~B2!

This map removes information in the relative phases of d
ferentun& components, in whichr may not be diagonal. The
nature of the averaging can be understood by applying i
the outer product of a coherent state. Such a product co
sponds to a ball in a classical phase space, thex andp values
of whose center are the real and imaginary parts of so
complex vectorj. If this ball representsr, the coarse-
grained densityr̃A uniformly populates the annulus in th
4-15
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ERIC SMITH PHYSICAL REVIEW E 68, 046114 ~2003!
phase space with mean radiusuju, and radial variance com
parable to that in the originalr.

A few lines of algebra show that map~B2! manifestly
satisfies the two conditions on a coarse graining set fort
Ref. @14#. It is idempotent,

r̃̃5 r̃, ~B3!

and states made typical by the coarse-grained distribution
also typical in the original~fine-grained! distribution:

Tr~r ln r̃ !5Tr~ r̃ ln r̃ !. ~B4!

The entropyof any density is defined as

Sr[2Tr~r ln r!, ~B5!

so it follows that the entropy of the coarse-grained den
under the same definition is

Sr̃A
[2(

n
Pr~n!ln Pr~n!, ~B6!

a function only of the occupation-number probabilities. T
conditions defining a coarse graining, together with the c
cavity of the logarithm, imply thatSr̃A

>Sr , for anyr.

A second stage of coarse graining can be applied tor, by
marginalizationof r̃A . The marginal probability of occupa
tion nm of some single componentm in the densityr is
defined as

P̃r~nm![ (
nkÞm

Pr~n!. ~B7!

Marginalization of the probability of vector excitation num
bern is replacement of the joint probability with the produ
of component marginals, denoted

P̃r~n![)
m

P̃r~nm!. ~B8!

The marginal coarse graining ofr is defined as

r̃M[(
n

P̃r~n!un&^nu. ~B9!

Marginalization produces an entropy that is a sum of
marginal entropies of each componentm:

Sr̃M
[(

m
F2(

nm

P̃r~nm!ln P̃r~nm!G . ~B10!

This coarse graining is performed whenever an interac
engine/reservoir system is factored into separate ‘‘engi
and ‘‘reservoir’’ components, which are assumed to have
dependently well-defined entropies and equations of st
The marginalization need not be complete, though whenm
denotes intracomponent eigenstates that are coupled
through the inter-component interactions, it effectively is.
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APPENDIX C: THERMAL DENSITIES AND THEIR
COHERENT-STATE REPRESENTATIONS

All the classical states in this paper are built from therm
density matrices. These are maximum-ignorance distri
tions consistent with fixed expected energy@14,19#, and are
defined in terms of an inverse temperatureb as

rb[
1

Z (
n

un&^nuexpS 2b(
m

nmEmD . ~C1!

The normalization factorZ is called thepartition function,
and equals

Z5(
n

expS 2b(
m

nmEmD . ~C2!

Since the energy eigenvaluesEm will be given units of fre-
quency,b will have units of time.

Thermal densities may alternatively be written as in
grals over outer products of coherent states. In a basi
eigenstate excitations, the vector thermal density takes
form

rb5
1

ZE S )
m

ebEm

p
djm* djmD e2jm* Kn

mjn
uj&^ju. ~C3!

A kernel matrixK is introduced by the Gaussian integra
which is diagonal in the eigenstate basis, with eigenval
Kn

m[dn
m(ebEm21). This K may be checked to recover th

thermal occupation number probabilities, by evaluating
trace defined in Eq.~B2!,

P̃rb
~nm!5

1

Zmnm! E0

`

ebEmdujmu2 exp~2ebEmujmu2!ujmu2nm.

~C4!

Here allj component integrals evaluate to one except atm,
and the normalizationZm is the partition function for the
density over them eigenstate alone. The exponential integ
differs from nm! only by the normalization exp(2bnmEm),
which with Zm recovers the thermal distribution.

The mean excitation number at anym is similarly easy to
evaluate by Gaussian integration, as the trace

Tr~rbn̂m!5
1

ZE S )
m

ebEm

p
djm* djmD e2jm* Kn

mjn
ujmu2

[n̄m5~K21!m
m , ~C5!

where a notationn̄m has been introduced for the mean. T
population is the inverse of them eigenvalue ofK, the cor-
rect thermal result.

The entropy of a thermal density is a sum of margin
entropies in the eigenstate basis. Evaluating these as f
tions of the mean occupation numbers gives

Srb
5(

m
S~ n̄m![(

m
~ n̄m11!ln~ n̄m11!2n̄m ln n̄m .

~C6!
4-16
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The preceding equations reduce the vector problem
collection of simple scalar evaluations, but the physical c
tent of any interesting problem is much more apparent i
geometric notation. The Gaussian kernel can be written
the basis-independent form

jm* Kn
mjn5j†Kj. ~C7!

The associated measure over complex vectorsj is invariant
under unitary transformations, and so is also defined fr
the product measure in the eigenstate basis as

)
m

djm* djm5dj†dj. ~C8!

In this geometric representation, the thermal density~C3!
becomes

rb5
Det~K1I !

ZpM E dj†dje2j†Kjuj&^ju, ~C9!

while the partition function is the ratio of determinants

Z5
Det~K1I !

pM E dj†dje2j†Kj5
Det~K1I !

DetK
. ~C10!

The eigenstate occupation numbers are eigenvalues o
diagonal matrixK21, which thus defines a basis-independe
mean number matrix

n̄[K21. ~C11!

The thermal entropy~C6! then has a representation which
manifestly invariant under unitary transformation of thej
basis,

Srb
5Tr@~ n̄11!ln~ n̄11!2n̄ ln n̄#. ~C12!

It is immediately apparent that thermal density matric
are a proper subset of the Gaussian-coherent density m
ces, and that Eqs.~C9!–~C12! hold for a general kernel ma
trix K with all positive eigenvalues. In particular, the tra
form for the entropy can always be reduced to a sum o
marginals of the eigenvalues ofK, which need not be thos
of any Hamiltonian. This property of Gaussian-coherent r
resentations will furnish a very easy way to impose con
tions of heterogeneous temperature, on system compon
whose basis states do not diagonalize the fully interac
Hamiltonian.

APPENDIX D: GAUSSIAN COHERENT
REPRESENTATIONS GIVE
THERMAL MARGINALS

A property of Gaussian-coherent densities, which will
useful in the analysis of the model engine, is that all of th
marginals are exactly thermal, under any basis related to
eigenstates ofK by unitary transformation. This will lead to
surprising ways of hiding order when the unitary transform
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tions are generated by the system’s own dynamical ev
tion.

To prove this result, define a basis-independent rais
operatoras

†[a†s[am
† sm, in terms of an arbitrary complex

vectors normalized tos†s51. The conjugate lowering op
erator isas[s†a[sm* am, and the number operator for ex

citations along thes direction isn̂s[as
†as . Using represen-

tation~A16! for the coherent stateuj&, the means-excitation
number in densityrb evaluates simply to

Tr~rbn̂s!5
DetK

pM E dj†dje2j†Kjus†ju25s†K21s,

~D1!

the generalization of Eq.~C5!.
Meanwhile, the marginal probability of exactlyns excita-

tions extracts onlyns powers of thes component ofj,
generalizing Eq.~C4!. A weight factor is added to the Gaus
ian kernel from the normalization of thes component ofuj&,
which cancels against the polynomial sum in all other
thogonal components. The resulting expectation is an
ementary Gaussian integral generalizing the Gamma fu
tion of the scalar case:

P̃r~ns!5
DetK

pMns!
E dj†dje2j†Kj2us†ju2us†ju2ns

5
DetK

Det~K1ss†!
@s†~K1ss†!21s#ns. ~D2!

Its important property is thatP̃r(ns) is properly normalized,
while the ratio at different values ofns is a power ofs†(K
1ss†)21s, making the distribution exponential inns , or
thermal. It is unnecessary to evaluate the more complex
trix inverse (K1ss†)21, as it is related to the mean excita
tion number by

s†~K1ss†!21s

11s†~K1ss†!21s
5s†K21s. ~D3!

Similarly, the normalization of the marginal distribution ha
the simple evaluation

DetK

Det~K1ss†!
5

1

11s†K21s
. ~D4!

APPENDIX E: PRODUCT-THERMAL
INITIAL CONDITIONS

Just as all marginal distributions from a Gaussia
coherent density are thermal, arbitrary heterogeneous t
mal initial conditions can be imposed with such a density,
any basis related by unitary transformation to the eigens
basis. For this appendix, suppose that the coordinatesj de-
fine the Gaussian integral for the raising operators of
model in Sec. IV.

In the model it was possible to choose a ‘‘preparati
4-17
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ERIC SMITH PHYSICAL REVIEW E 68, 046114 ~2003!
Hamiltonian’’ ~13! whose eigenstates were products of eig
states in left and right sectors, denotedL andR. Each sector
included all of the excitations in its respective reservoir, a
a sector-unique linear combination of the excitations in
engine. With respect to this decomposition, write the colu
vector of complexj coefficients

j5F jL

jRG . ~E1!

This basis decomposition is related by an orthogonal tra
formation to$x,S,y,A% basis of eigenstate excitations of th
fully interacting engine.

For the subset of coefficientsjL, a standard thermal den
sity matrix is given by

rbL
L

5
Det~KL1I !

ZLpML E djL†djLe2jL†KLjL
ujL&^jLu, ~E2!

in terms of inverse temperaturebL, as per Eq.~C9!. The
corresponding density forjR is given in terms of abR as

rbR
R

5
Det~KR1I !

ZRpMR E djR†djRe2jR†KRjR
ujR&^jRu. ~E3!

Coherent states for the full system are products of cohe
states for theL andR factors, by application of the Binomia
theorem to Eq.~A16!. Thus,

uj&5ujL,jR&, ~E4!

and the product density as long as the two sectors are de
pled is simply

r5rbL
R rbR

R . ~E5!

Product~E5! is itself a Gaussian integral over states~E4!.
If the sector coefficients are reassembled into the colu
vector~E1!, the kernel of that integral has the block-diagon
form

K5FKL

KRG . ~E6!

As long as the system is evolving under the prepara
Hamiltonian, the phases of the separatejL and jR cancel
from their respective Gaussian integrals, becauseKL andKR

are diagonal in the sector eigenbases. Thus the time in
need not be specified explicitly for either the factor or pro
uct densities to be well defined.

To use density~E5! to specify the same distribution a
other times, suppose that interactions are turned on at s
time labeled 0. Then take the coefficient vectorj to be the
explicit coherent-state vectorj0 of Eq. ~A22!. The evolving
density specified by these heterogeneous initial condition
defined at all later times by taking the Gaussian integral o
j0, with K fixed, and allowing the coherent statesuj& to
evolve as in the Schro¨dinger picture. This is how a fixed
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uncertainty specifies a distribution on which measureme
may be made over an indefinite time interval.

Alternatively, something like the Heisenberg picture m
be adopted, by taking the Gaussian integral over the s
coefficientsj t used to index the coherent states. The pre
ration basis is related to the eigenbasis by an orthogo
transformation, and the eigenbasis evolves under the dia
nal time-evolution matrix. Thus the preparation basis at ti
0 is related to the eigenbasis at any other time by a uni
transformation, and the measure is invariant under th
transformations. Thus the only change in the Gaussian i
gral is by similarity transform of the kernelK, from the
block-diagonal form~E6! at time 0 to whatever basis is de
sired at timet. The inverse matrixn̄t evolves under the iden
tical similarity transform, worked out for the examples
interest in the text in Eq.~22!.

APPENDIX F: CONNECTION TO THE
CLASSICAL ACTION

Single-time correlations in linear models are element
to evaluate in Gaussian-coherent ensembles, because
fields j may simply be transformed from one timet to an-
other t8 with the unitary matrixeiE(t82t). The measure is
invariant, and the kernel evolves by similarity transformati
under the same unitary matrix, as noted in Appendix E.

An alternative approach is to explicitly embed the app
priate time-evolution operator~called the time-loopSmatrix!
in the thermal trace, and compute classical expectations
background field expansion. While more cumbersome
single-time correlations of linear systems, this method au
matically includes the correlations implied by classical d
namics at arbitrary collections of times, and provides a s
tematic perturbative construction for systems that canno
solved exactly.

The background field expansion of heterogeneo
temperature systems is of interest as a formal constructio
its own right, because it produces a sum of a classical ef
tive action and a multitemperature thermal effective pot
tial. The former identifies classical dynamics, while the lat
specifies initial conditions. The sum of the two potentials h
a natural interpretation as a stationary-point evaluation o
Matsubara path integral, analytically continued to real tim
and extended to incorporate multiple temperatures. Both
interpretation and the form are retained even if the system
nonlinear. Thus, even if one does not choose to carry thro
the full construction in complex cases, if the classical act
is known, the justification is provided for combining it with
thermal ensemble to select nontrivial initial conditions,along
with a rule for transforming the combination to describ
origins of equivalent dynamics at different times.

1. Forming the time-loop generating functional

The thermal ensemble is specified at some timet50.
Coherent-state parameters are labeledj0, as in Appendix E,
and the kernel for thet50 distribution is denotedK0.

Correlations at arbitrary times are then computed by
serting Schro¨dinger-picture operators at those times into
4-18
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thermal trace of theS matrix that evolves the states att50
over an interval sufficient to include them. In zer
temperature field theory, theS matrix generally interpolates
between the initial and final true ground states~in the many-
particle application, ‘‘in’’ and ‘‘out’’ vacua!. Since both bra
and ket states in the thermal ensemble are given att50, the
‘‘final’’ ket is defined by the action of theS matrix on thet
50 ket, which is the conjugate of the ‘‘initial’’ bra. Sinc
this evolution must be free from the action of the operators
be inserted, there are twoS matrices forming a time loop
@39#, with all physically correlated observables inserted in
only one leg.

The time-loopS matrix is the time-loop-ordered produc
of the sequence of infinitesimal operatorseiĤdt, where Ĥ
includes interaction terms if the theory has them.dt is posi-
tive on the forward leg, and negative on the return. If
wish to make a background-field theory of the number
erators, their expectations can be generated with a pertu
tion of the energy matrix by an arbitrary probeJ(t). The
generating functional then has the form

zJ[Z TrH rbT expS i R
0
dt Tr@~E2J!n̂# D J , ~F1!

where the Schro¨dinger-picture number operator is defined
each time as

n̂5@ n̂m
n #[@am

† an#, ~F2!

so that the Hamiltonian is

Ĥ[Tr@En̂#. ~F3!

T denotes time-loop ordering, and ther0 indicates that the
expansion of the exponential begins and ends att50. The
outer trace in Eq.~F1! is over quantum states, and the tra
in the exponential is simply over matrix indices, as in E
~F3!.

Since coupling to the number operator preserves the
earity of the theory, the distributions of all single-compone
occupation numbers in the perturbed theory remain exa
thermal. The perturbedS matrix continues to act by matrix
multiplication of the parameterj, so from form ~C9! and
algebra, one can write

zJ5
Det~K01I !

pM E dj0
†dj0 expF2j0

†XK01I

2T expS i R
0
dt~E2J! D Cj0G . ~F4!

First variation ofzJ generates the expectation ofn̂ in the
presence ofJ, denotedn̄J :
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i
d ln zJ

dJ~ t !
5

Z

zJ
TrH rbT expS i R

0
dt Tr@~E2J!n̂# D n̂~ t !J

[n̄J~ t !

5T expS i E
0

t

dt8~E2J! D
3FK01I 2T expS i R

0
dt~E2J! D G21

T

3expS i E
t

0

dt8~E2J! D . ~F5!

Evolution under the free Hamiltonian is simple to fact
out of perturbative expansions inJ, so it is convenient to
compute the so-called ‘‘interaction picture’’ number matrix

ñJ~ t ![e2 iEtn̄J~ t !eiEt, ~F6!

and its conjugate probe matrix

J̃~ t ![e2 iEtJ~ t !eiEt. ~F7!

Computing with interaction-picture operators is equivalent
performing the unitary transformation of thej variables to
appropriate times at the outset of the calculation. As
pected, in the linear theory this will account for all dynam
cal structure, and the rest of the background field expans
will simply verify the constancy of the interaction-pictur
observables. In a nontrivial theory, only an exactly solva
part of the Hamiltonian would be used to define the inter
tion picture, and the remaining interactions would have to
treated perturbatively together with the influence ofJ.

The time-loop-ordered matrix appearing in Eq.~F4! has
the expansion in interaction pictureJ̃,

T expS i R
0
dt~E2J! D 5T expS 2 i R

0
dt J̃D , ~F8!

while the similar expansion forñJ is

ñJ~ t !5TexpS 2 i E
0

t

dt8 J̃D FK01I 2TexpS 2 i R
0
dt J̃D G21

T

3expS 2 i E
t

0

dt8J̃D . ~F9!

At t50 ~either initial or final!, Eq. ~F6! is no transformation,
so

n̄J~02!5ñJ~02!

5T expS 2 i R
0
dt J̃D

3FK01I 2T expS 2 i R
0
dt J̃D G21

, ~F10!
4-19
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n̄J~01!5ñJ~01!5FK01I 2T expS 2 i R
0
dt J̃D G21

T

3expS 2 i R
0
dtJ̃D , ~F11!

and whenJ̃ is Hermitian,n̄J(02) and n̄J(01) are related by
a unitary transformation. At every time,ñJ evolves according
to

dñJ~ t !

dt
52 i @ J̃~ t !,ñJ~ t !#. ~F12!

Finally, it is convenient to use Eq.~F8! to evaluatezJ in
closed form as

zJ5
Det~K01I !

pM E dj0
† dj0

3expF2j0
†XK01I 2T expS 2 i R

0
dt J̃D Cj0G

5
Det~K01I !

DetFK01I 2T expS 2 i R
0
dt J̃D G

5Z Det@K0^j0j0
†&J#

5Z Det@K0n̄J~0!#expS i R dt Tr~ J̃! D , ~F13!

where the expectation̂j0j0
†& is with respect to the Gaussia

integral.

2. Subtleties of the Legendre transformation

Ordinarily, i times the effective action is defined as t
Legendre transform of the logarithm of the generating fu
tional from the J-perturbed S matrix. In the finite-
temperature problem here, though, it is not obvious e
whether that transform should be imaginary or real. Sort
out the correct way to do the transformation will expo
subtleties in the inversion of the relationnJ that encodes
initial conditions as well as dynamics.

The reason there is a puzzle is that Eq.~F13! clearly has
the form

zJ5
Det~K01I !

pM E dj0
† dj0 e2j0

†(K01J)j0 ~F14!

with the matrix

J5I 2T expS 2 i R
0
dt J̃D . ~F15!

If J is Hermitian~a nontrivial restriction onJ, but one which
is useful to impose for a moment in order to see the poi!,
04611
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the generating functional is purely real, and its proper Le
endre transform would seem to be

zn̄0
5e Tr[Jn̄0]zJuJ( n̄0)

5eTr[ I 2K0n̄0]zJ( n̄0)

5Z e2 Tr[K0n̄02I ]Det@K0n̄0#, ~F16!

where the inverse relation̂j0j0
†&J( n̄0)[n̄0 expressesJ in

terms of the most convenient number expectation, and
second and third lines of Eq.~F16! have been filled in from
the closed-form evaluation of Eq.~F14!. Since invertible re-
lations

n̄05~K01I !21@ n̄J~02!1I #5@ n̄J~01!1I #~K01I !21

~F17!

exist, n̄0 is a convenient and acceptable independent varia
to encode the initial~and final! conditions onn̄.

On the other hand, from the original form of the gener
ing functional~F1!, and the fact that by definition of the tim
loop,

expS i R
0
dt Tr@En̂# D 51, ~F18!

it would seem that the proper Legendre transform sho
have some form like

z n̄;expS i R dt Tr@J~ t !n̄J~ t !# D zJU
J5Jn̄

. ~F19!

In fact, the correct transform must have both real and ima
nary terms, because the real term in Eq.~F16! is necessary to
handle the boundary values, but not dependent at all on
history of which Eq.~F19! should be a functional.

The key to correctly separating the dependencies is co
ing the degrees of freedom and ambiguity in the origin
historynJ , and in any putative inverse functionJn . Clearly,
the evolution equation~F12! cannot give dynamics to the
trace ofñJ , so one component of any inversionJ̃n must be
arbitrary except possibly att50. This freedom can be sys
tematically parametrized by splitting

J̃n~ t !5 J̃'~ t !1l~ t !ñ~ t !, ~F20!

such that

Tr@ J̃'~ t !ñ~ t !#50, ~F21!

leavingl(t) an almost arbitrary function. There may be a
ditional nondynamical components ofñJ , such as the deter
minant if J is Hermitian, in which case there are addition
almost arbitrary components inJ̃' . Such components could
be fixed by any regular constraints~resembling gauge condi
tions!, except that they must recover Eq.~F15! globally, to
encode the finitely many degrees of freedom inñ(06).
4-20
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One way to handle the global inversion is to letJ̃n have a
singular component,

J̃n~ t !5 J̃reg~ t !1 J̃1d~ t201!, ~F22!

imposing gauge conditions everywhere onJ̃reg to fix l(t)
and any other free functions, and letting the final transform
tion generated byJ̃1 produce the properJ. Using such an
inversion, the correct Legendre transformation ofzJ is

z n̄[expS i R dt Tr@ J̃reg~ t !ñ~ t !# DeTr[Jn̄0]zJuJ( n̄0) .

~F23!

Under variations that leave initialn̄ fixed,

2 i
d lnz n̄

dn̄~ t !
U

n̄(0)

5Jreg~ t !5Jn̄~ t !, ~F24!

becauseJreg differs from Jn̄ only at t501 . The solutions
n̄(t) whereJreg(t)[0 are the classical expectationsn̄cl(t,n̄0)
under the intrinsic dynamics. Equation~F24! thus vanishes a
the right solutions to define an effective action.

Meanwhile, variations of the total solution under whic
n̄(t) remains the classical stationary point with respect to
initial conditions are just those of Eq.~F16!:

d ln z n̄

dn̄0
U

n̄(t)5n̄cl(t,n̄0)

5J~ n̄0!. ~F25!

J vanishes on the number expectation value set by the o
nal thermal partition function, so the effective potential h
the same relation to initial conditions that the effective act
has to dynamics.

The Legendre transform of a finite-temperature partit
function with nontrivial dynamics thus takes the form

z n̄5eiSeff[ n̄]e2b̄F[ n̄] , ~F26!

where for the linear, Gaussian-coherent ensemble,

Seff@ n̄#5 R dt Tr@Jreg~ t !n̄~ t !# ~F27!

and

b̄F @ n̄#52 ln Z1Tr@K0n̄02I 2 ln~K0n̄0!#. ~F28!

Though the constructions demonstrated here referred to
form of this particular ensemble, the separation between
namics and initial values is natural, and the same form
the effective potential should arise for any theory that can
expanded in Gaussian fluctuations.

3. Relation to the Matsubara path integral

The argument of the exponential in Eq.~F26! has a natu-
ral interpretation as a single contour integral, provided by
Matsubara path-integral construction of finite-temperat
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ensembles. In the Matsubara theory, the partition functio
a functional integral of fields on a periodic contour. Corre
tions on the contour have an analytic continuation to retar
Green’s functions@39#, giving the contour an interpretatio
as a rotation of a time axis to periodic imaginary values. I
stationary-point expansion of the functional integral we
performed, the log of the partition functionbF would itself
be a contour integral, with contour periodb, andF a density
on the imaginary time axis~see Ref.@20#, Sec. II A, for an
example!. The leading~‘‘classical’’! contribution toF would
be the field Hamiltonian at the stationary configuration, a
the determinantal correction would, in general, be prop
tional to the contour length, as is generally the case in lo
field theories@40#.

Since the effective action in Eq.~F26! is itself a time-loop
integral, with starting and ending points att50, it may be
regarded as an insertion into the imaginary contour integ
already definingb̄F ~the multitemperature generalization o
bF). At that point, it effectively becomes a continuation
the original Matsubara contour to the~real! time axis in a
periodic, complex manifold, on which all of the Green
functions are defined, as shown in Fig. 5. The continuation
the stationary-point evaluation of the effective potential
the classical effective action is no more than the cumulat
of the analytic continuations of the microscopic thermal
retarded Green’s functions, so the form of the Legen
transform could have been anticipated. Further, because
contour defining a thermal trace is intrinsically closed,
must have been the time-loopS matrix, and the resulting
time-loop action it generates, that embeds that trace in
time.

This derivation of classical actions from the stationa
point evaluations of Matsubara Hamiltonians was propo
in Ref. @20#. Both in that work and here, nontrivial dynamic

FIG. 5. Deformation of the Matsubara contour to include a s
ment of time-loopSmatrix. Rotationt↔2 i t gives the signs for the
action and free energy in Eq.~F23! from a single integral with
contourC, andx marks the leg on which positive-time correlation
are measured.
4-21
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arose from initial conditions of heterogeneous temperat
In Ref. @20#, the analytic structure of the path integral w
made well defined by introducing a conformal factor on t
Matsubara manifold, which was itself a dynamical fie
whose fluctuations were adiabatic transformations. Here,
erogeneous temperature is built into an algebraic parti
function by exploiting convenient features of Gaussian
herent ensembles. Yet adiabaticity remains central to the
struction ~as discussed in the text!, and the form of the re-
sulting effective potential is the same.

4. Sample forms in two dimensions

The foregoing constructions are easy to illustrate for
caseK0 232 and Hermitian. This case exactly describes
SandA even-state occupation numbers atM51, analyzed in
the text as a refrigeration example, after the odd-statej com-
ponents are integrated out of the Gaussian integral. He
ticity of K0 ensures realn̄0 eigenvalues, hence real observ
mean number in all physical bases. Probing with HermitiaJ̃
illustrates the gauge freedoms introduced when both the
terminant and trace ofñJ are nondynamical.

The decomposition of a 232 Hermitian J̃ into its inde-
pendent vector degrees of freedom is

J̃5(
i 50

3

J̃i êi . ~F29!

The basis matrixê0[I , while

ê15F 1

1 G , ~F30!

ê25F 2 i

i G , ~F31!

ê35F1

21G . ~F32!

The corresponding decomposition of the number operato

n̂5(
i 50

3

n̂i êi ~F33!

with the component operators having the physical identifi
tions in the engine model

n̂05 1
2 ~ n̂x1n̂y!5 1

2 ~ n̂L1n̂R!5 1
2 ~ n̂11n̂2!,

n̂15 1
2 ~ n̂L2n̂R!,

n̂25 1
2 ~ n̂12n̂2!,

n̂35 1
2 ~ n̂x2n̂y!. ~F34!

The coefficients of theêi in this representation form
SO(1,3) vectors, which for the number operator may be
04611
e.

,
t-
n
-
n-

e
e

i-

e-
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-

-

noted ñ5(ñi) i 50, . . . ,3[(ñ0 ,nW ), and for the probe J̃

5( J̃i) i 50, . . . ,3[( J̃0 ,JW ). The basis matrices have been ch
sen to give the coefficients in Eq.~F34! convenient normal-
izations, with the result that they take on commutation re
tions

@ êi ,êj #52e i jk êk ~F35!

~with e i jk the totally antisymmetric symbol on three indices!,
and traces

Tr@ êi êi #52, ; i . ~F36!

It is clear from the evolution equation~F12! that
d(ñ0)J /dt50, and from the commutation relations~F35!
that the vectornW J evolves as

dnW J

dt
52JW3nW J . ~F37!

Thus,d(nW J•nW J)/dt50 as well.
The first gauge condition that can be put on an invers

J̃n , to make up for the degree of freedom unfixed by a d
namical determinant ofñ, is (J̃0) n̄50. The correct inversion
of the remaining vector components then decomposes a

2JW n̄5
1

nW •nW
S nW 3

dnW

dt
1lnW D , ~F38!

where the cross product is manifestly traceless withñ, and
the arbitrary functionl(t) corresponds to the degree of fre
dom unfixed by a dynamical trace ofñ. l may be gauged
regularly by choosing (J̃3) n̄50, for all solutions withñ3
Þ0. ~Some basis in which such a regular gauge condit
applies can be chosen for any stationary solutionñ on a finite
t interval, since a regular solution cannot be space filling
such an interval.! The expansion in components, of the fun
tion l selected by this gauge, is

l5
ñ2

ñ3

dñ1

dt
2

ñ1

ñ3

dñ2

dt
. ~F39!

The trace which is the argument of action~F27! is very
easy to evaluate in such an ‘‘axial’’ gauge,

Tr@Jn̄~ t !n̄~ t !#5Tr@ J̃n̄~ t !ñ~ t !#52JW n̄•nW 5l ~F40!

with the result that

Seff@ n̄#5 R dt l~ t !. ~F41!

Variation of Eq. ~F41! on the constraint surface (nW •nW )
constant, consistent with the gauge conditions imposed oJ̃,
may be checked to yielddñ/dt50; ; t. From this condition
and the interaction-picture definition~F6!, it follows that the
classical stationary solution
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n̄cl~ t !5eiEtñ~02!e2 iEt. ~F42!

Then, using the inversion of Eq.~F17!,

ñ~02!5~K01I 2 n̄0
21!n̄0 , ~F43!
,

g

es
.E

in

al

04611
the variation of Eq.~F28! for the initial condition yields

n̄05K0
215ñ~02!, ~F44!

as required.
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