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Self-organization from structural refrigeration
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The self-organization of a classical current is studied, in an exactly solvable model where both the quantum
statistics over microhistories of particles, and the macroscopic phenomenology, can be computed in closed
form. It is shown that for thermodynamically reversible systems, the Jaynes formulation of statistical mechan-
ics naturally extends to include explicit macroscopic dynamics and heterogeneities in temperature, while
preserving the structure of partition functions, effective potentials, and ground states of the equilibrium theory.
Self-organization in such reversible systems is constrained by entropy transport through engine and refrigera-
tion cycles, rather than by diffusion in gradients. Limitations in the ability to decompose such systems sensibly
into components with additive entropies, and in the extrapolation of entropy functions from equilibrium forms,
are discussed with examples.
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I. INTRODUCTION librium statistical mechanics[13]. The measure of
uncertainty is the usual Shannon/Boltzmann entropy of a
density matrix, but the evolution of this density is studied in

“Self-organization"—the dynamical emergence of tem- the reversible, rather than the Markovian, limit. The point
porally or spatially ordered macrostates from microphysicssmphasized is the key role that projection of the description
subjected to less-ordered boundary conditions—has becomg 5 system into its components has, in creating component
an actively investigated phenomenon, especially in chemistrgntropies that can have any nontrivial dynamics. These
[1,2], granular flow[3,4], and the fine structure of friction essarily coarse-graine@ntropies[14] induce measures of
[5-7]. In all these studies, when ordering depends on théoth the degree and the complexity of the dynamically gen-
discreteness of the particles or events, the analysis is carriegtated order. The concepts of both entropy production and
out in an irreversible quasistatic limit, so that evolution is aentropy transport are derived as consequences of the interac-
Markov process with respect to states characterized by thetron between Hamiltonian evolution and the coarse graining
configuration(as opposed to currenvariables[3,5]. When implied by component projection—they are not taken as
ordering is a result of mass action, it is typically analyzed inprimitives.
terms of phenomenological state variables and equations of The entropies that result do not, in general, have the phe-
motion, whose forms are locally those of equilibrium sys-nomenological forms of equilibrium, though by construction
tems (Ref. [2], Chap. 3. Temporal ordering emerges from they have the same function as measures of residual uncer-
these classical equations, regarded as dynamical syster@nty, extended to apply to dynamical macrostates. Though
evaluated far from their equilibrium solutions. Since all of at leading order the entropies of components are additive as
these analyses apply to extreme-dissipative limits, there is im the well-known chemical mass-action modgty, it is the
tendency to conflate self-organizati¢80) with dissipative  subleading orders in the evolving whole-system entropy that
structureq 8], self-organized criticalitf9], or some alterna- quantify the spontaneously generated organization. As ex-
tive [10] but similarly irreversible process. pected from the careful analysis of Maxwell dem¢hS, 16,

This paper argues that the criteria for SO are informa-only when these entropies of macroscopic organization are
tional in nature, and that they can arise in the dynamics oincluded as corrections to the transported entropies of clas-
ideally reversible systems. The reversibility considered hersical Carnot’s theorem, is the correct formulation of the sec-
is not a tautological consequence of a finetuned microscopiond law of thermodynamics, and in particular its reversible
reversibility (as in Ref[11]), but rather the standard, macro- limit, respected.
scopic reversibility of Carnot’s theorem in thermodynamics The difference between the true entropies of history, and
[12]. Here not dissipation, but the partitioning of entropy their corresponding equilibrium phenomenological forms,
flows among elementary engine and refrigeration cyclesserves to emphasize how the quantitative understanding of
emerges as the organizing constraint on the system. Thus ti#0 depends on the proper definition of classical states and
association of dynamical organization with dissipation is atmacroscopic descriptions of transformations in statistical
best case dependent. systems. It is well known that in comparisons of equilibrium

The idea that SO can sensibly arise from reversible dyensembles, only coarse-grained entropan increase, and
namics is demonstrated here with mass-action models witthey are only assured to increase relative to some reference
ordinary macroscopic state variables. The key difference imescription, if the state variables in the reference represent
this analysis from the works cited aboj#&,2,8], though, is the correct andcomplete constraints on the otherwise-
the way in which order is defined from the residual uncer-maximum-entropy distributioi14]. Macroscopic averages
tainties in microhistories given macrohistories, by direct ex-that account only for a subset of the complete set of state
tension of the treatment of time-independent states in equivariables of some ensemble define an intrinsicatharser

A. Untangling self-organization from dissipation
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ensemble, and the second law says nothing about how sub- The model chosen as example is a linear quantum-
sequent characterizations of the true ensemble may relate tscillator idealization of the spontaneous formation of an
such a loose initial characterization. The mere existence ahductor(L) current from a capacitdiC) charge separation in
macroscopic averages does not imply that they are adequageresistancelesisC circuit, or any number of other equiva-
as state variables, or place any constraint on the evolution dént processes of macroscopic oscillation between potential
entropy functions computed from them. and kinetic order, ultimately created by interference of quan-
The same is true for ensembles whose macroscopic avetum coherent states. While this is the simplest nontrivial
ages evolve with some interesting time dependence, exceptodel possible, it captures the process by which nontrivial
that the set of eligible state variables becomes larger. Thuself-organization happens in empirically interesting cases,
even the formulation of the second law is predicated on th@among which the self-organizing reversible thermoacoustic
nontrivial technical problem of identifying which measure- engineq22] have already been analyzed as dynamical criti-
ments(available at or after any elapsed timepresent the cal systemq21]. Furthermore, the Carnot organization of
true constraints on the uncertainty of histories. It is showrmacroscopic entropy transpdgance that has been derived as
here that, in general, the state variables of a self-organizing procesghas clear and relevant isomorphisms in biochemi-
system will include currents or explicitly time-dependent his-cal processes such as enzyme-catalyzed polymerization.
tories, as well as the static configurations adequate to chafFherefore the form of the model has been chosen to maxi-
acterize equilibrium. A restriction to instantaneous densitiesinize the explicit overlap with these cases.
or other such equilibrium forms, results in a loose character- The analysis leads to two main conclusions of a funda-
ization of the true state, and loss of the ability to apply themental nature.
second law as any tight constraint on their evolution. The The Jaynsian “maximum-ignorance” formulation of sta-
errors in estimating the entropy, arising simply from the re-tistical mechanic$19] offers a principled definition of clas-
striction to an inappropriate and incomplete set of state varisical states, which is general enough to include the classi-
ables, can be quite sufficient to completely hide the actuatally reversible systems on an equal footing with those in
entropy changes associated with the formation of order.  static equilibrium. Properly understood, it follows more or
less from definition that classical reversibility, and not
B. Mode of analysis and results merely equilibrium, is the proper domain of “equilibrium”
statistical mechanics.

The current paper is not an axiomatization of SO even for The familiar thermodynamic potentials, such as the Helm-

reversible systems, nor does it aim to define a Completelﬁoltz or Gibbs potential§13], are simply the leading terms
general hotation o capture all aspects of what one may WIS an expansion in heterogeneities of the environmental con-
to call organization. Good Qef.‘efa' works relating 1o Me&traints on an ensemble. Where the equilibrium form cap-
Sures of order and complexity in Markov and general StaliSyres the static response of the system to the homogeneous
tical systems are Ref§17,1§.

Instead. thi t ther th h vsi constraints imposed by the environment, the succeeding
nstead, this paper presents a rather thorough analysiS g,,,q represent the coupling to heterogeneities, and the time-

an exactly 50_""’%‘“9 example, which is at once an eIementaréfependent or current responses of the system to them. This
guantum statistical ensemble, and a familiar instance of dy-

ical f " ¢ ord : the classical level Th will be demonstrated explicitly in the example, but it is im-
namical formation ot order at the classical 1evel. TN eX-,,qn enough to deserve a separate abstract treatment in the
ample incorporates matter flow through degrees of freedo

X : llowing section.
natqrally interpreted as system and environment components. Though limited in scope, this discussion serves as a first
It incorporates heterogeneous and perpetually time;

q dent t : d vet i letely d i step in a systematic analysis of SO in its own terms. The
ependent temperatures, and yet 1S completely describgfl e siple limit considered here readily admits the steady dy-
within Jaynes’s formulation of “equilibrium” statistical me-

namical incorporation of uncertainty by tracing over unob-

chanicq19]. It therefore demonstrates the subtleties of 'den'served aspects of the environmental state or interactions. A

tifying classical state variables when measurements may ?ecise analysis of the origins of irreversibility, and its con-

bounded in time, and the proper entropy function of those, i equences for the forms of possible ordered states, can thus
8 pursued directly. These extensions will be performed in

a case where both are known to exist and can be expressedd

closed form. It demonstrates thHprovable need for non- future work
static classical variables to define the ensemble of microhis- '
tories, and shows quantitatively what errors are made by

loose descriptions restricted to the phenomenology of equi-

librium. The entropies associated with both formation of or- The paper is organized as follows. Section Il abstracts the
der, and simple heat flow, occur with distinct powers in ageneralization of thermal effective potentials to reversible
regular small-parameter expansion, and both the classicaystems with heterogeneous temperatures and possibly ex-
Carnot theorem and its corrections from subsystem organizaslicit dynamics. Section Il reviews the relevant features of
tion can be derived exactly. Finally, the model admits anthe empirically well-studied thermoacoustic engines, and the
effective potential description of the classical evolution, andconsiderations from biochemistry relevant to reversible SO.
makes contact with a similar treatment of heterogeneous an8lection IV introduces the actual model, and computes its
dynamical temperatures carried out previously with finite-properties as a microcanonical ensemble, a system of self-
temperature field theory methofi20,21]. organizing components, and a classical engine. Section V de-

C. Layout of the paper
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fines the proper entropy of histories, and the generalizatioscalar constraint odS'dU determine an entire distribution,
of the Helmholtz potential for the dynamical model. Finally, at which pointU and T becomestate variablessufficient to
Sec. VI discusses consequences for the interpretation efefine the resulting ensemble.
complexity and the notion of ground states. In equilibrium theory,S is assumed to be a function of
Following the main text, six appendixes establish notatiorstatic configuration variables only. If there is order in the
and introduce the tools and supporting calculations that restate that maximize$ at constrainedJ, even if it arises by
late this derivation to other analyses of SO Inenginesymmetry breaking and is not “selected” by the fine struc-
[20,21]. They are written to be readable as an independentye in the environment, one still thinks of the need for order
track on mathematical methods, and to introduce a NUMDELg peing “imposed” by the environmental constraint. That is,
of tools for handling heterogeneous-temperature partition, e oustem is as disordered as it can be when coupled to that
functions that have not been used before. Of particular met Snvironment.

odolog.|cal Interest are Appepdlx C, which introduces Self-organizing systems are anomalous with respect to the
Gaussian-coherent representation of thermal ensembles, apd, - <o nation given by the equilibrium effective potential,

Appendix F, which derives the relation of the current discretebecause they are typically more ordered than any of its en-

method for h_andling heterogeneous temperature, to ﬁnitefropy maxima. The excess order only arises, though, when
temperature field-theory methods developed previol0y. heterogeneities in the environment induce flows through the

system. In the simplest case, the characterization equivalent

Il. EFFECTIVE POTENTIALS FOR to Eq. (1) must therefore contain at least some set of tem-
HETEROGENEOUS-TEMPERATURE SYSTEMS peratures{T,=1/8;}. The potentialA cannot, in general,
A. Constraints, distributions, and state variables identify the response of the system to such an environment,

. and the minimal set of state variables needed to correctly

An obvious and often-advanced gda] (Ref. [2], Sec.  compute the residual microstate uncertainty is no longer
7.8) in the analysis of dynamical SO is to relate the forma-iatic. There can, however, be a functidrihat generalizes
tion of order to processes like spontaneous symmetry brealﬁppropriately. If, from the{;} (by whatever prescription

ing [23] in equilibrium critical phenomena, which have a ¢ : ¢ hat
well-understood conceptual foundation. The most compactone computes some average inverse tempergflrtha
couples toU, A will, in general, take the form

and still one of the conceptually clearest, tools for under-
standing the relation of expressed to hidden symmetries is
the effective potential24], which has indeed motivated an
industry of deriving potential methods for stochagtidar- B A=Al — B8] —
kov) processe$25,26. A '8U+02j) (Bi=By)Jy =S @
An advantage of studying SO first in reversible systems is
that, even when their order is explicitly dynamical, these
yield effective-potential descriptions that are a direct con- The {J;;} are some set of time-dependent state variables
tinuation of the familiar thermodynamic potentials of equi- effectively constrained by the corresponding temperature dif-
librium. One can therefore introduce the effects of environferencesp;—B;. They may represent classical histories of
ments that impose heterogeneous temperatioesother  reversible systems, in which case tBe- B; will generally
thermodynamic potentialsand induce flows, without simul- be data on some Cauchy surface, which specify the initial
taneously taking on the additional difficulties of breaking conditions for the ensemble in question. Alternatively, in ir-
time-reversal symmetry and having to reinterpret the meanreversible systems, th€J;} may represent currents with
ings of operators in the Markov ca25] relative to those in  time-invariant values, but which break time-reversal symme-
the underlying Hamiltonian field theory. try, and theB; — 8; may represent steady-state boundary con-
The usual Helmholtz potentia for a static system in ditions. (Derivation of this latter form will be provided in
equilibrium thermal contact with an external world at homo-future work incorporating irreversibilitySin Eq. (2) will, in
geneous temperatuiie= 1/ is defined by general, depend dd and all of theJ;; . As in the equilibrium
_ case, thes; will selectU andJ;; values through the deriva-
BA=pBU-S. (1) tives of S, At this maximum of the more general entropy, the
distribution again depends only on thkeandJ;; values, and
The structure ofA directly portrays its function. One may it becomes sensible to interpret them as the state variables.
regard U (average internal energyand S (Shannon/ The model introduced in Sec. IV generates an explicit
Boltzmann entropy as properties of whatever distribution instance of Eq(2), in which the dynamical system has an
represents the system, well defined whether or not it i€xact representation as a density mafixover quantum
coupled to an environment. When coupling is introdudéd, states of simple-harmonic oscillators, aBdhas a closed-
is the system property on which the environment imposes form evaluation as the trace qf Inp. Particle transport
constraint, andS is the system property maximized when through classical simple-harmonic oscillation is the only
average internal energy is thomly constraint. is the con-  nonequilibrium form of order, angd;— g; are initial tem-
stant of proportionality, characterizing the environment,perature boundary conditions in two “reservoirs” of the en-
which determines the slopdSdU to which the system vironment, which then imprint themselves forever on oscil-
settles. Only in the maximum-entropy configuration does thdating charge/current history variablésg .
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B. Classical reversibility is generalized “equilibrium”

The definition ofstate variableused here is: one of a set
of constraints intrinsic to what one calls a thermodynamic
system. It then follows that entropies computed from the
state variables must be intrinsic properties of the system, and
not artifacts of a deliberate coarseness in its characterization.
This is in slight contrast to the point of view usually adopted
in statistical mechanid®,13], that the state variables are the
only macroscopic quantitiesorth measuring, even to char-
acterize a unique instance of a strongly chaotic system. In the
latter use, the very definition of entropy is context dependent
[14], upon what one considers worth measuring.

. One can acknowledge the qontext depende_nce of entro- FIG. 1. The idealized traveling-wave thermoacoustic engine.
pies comp_uted from Macroscopic averages, while at the San’ﬁuares are reservoirs at temperatligand T, and the concen-
time allowing them to be intrinsic properties of the SYSteMuyic circles represent the resonator. Short parallel lines in the reso-

by as;puatmg CIaS.S'(:aI state va_nables with [Iingparatlon nator are the stack of closely spaced plates, coupled to the reser-
conditionsthat admit a class of instances, which one later,

An ideal le is the S voirs at either end as indicated by the arrows. Dashed arrow
Mmeasures as an ensemblén ideal example is the Stern- indicates the direction of propagation of the spontaneously gener-
Gerlach experiment.

A . ._ated traveling wave.
From such a definition, there follows an unambiguous dis- g

tinction between reversible and irreversible processes. Since

every ensemble admits an arbitrarily large collection of meagquilibria among the reversible processes is that they more
surements, and since measurements in the real world requireadily permit this identification.

either lapse of time or selection of parallel instances, the

statistical distinction to be made is whether an arbitrary set IIl. MOTIVATIONS FOR THE MODELS

of measurements is predicated on a fixed uncertainty of his-

tories, given once and for all, or not. Thus, one may define Two aspects of the model constructed below are con-
the following. strained to make contact with empirical cases of SO. First,

. _ L the simple redistribution of quantum bosons to form a clas-

(1) A process desc_rlbed by an ensembleesersibleif an _sical current is used to represent the formation of order in a
arbltrary collectlon.of measurements on th.e ensemble 'Peal, reversible, dynamical critical system. For this the rep-
constrained by a fixed uncertainty over rT"Croscc’p'c"jllIyresentative instance is the traveling-wave thermoacoustic en-

5 Zpecified hligtories. ibleif th ificati ¢ luti gine. Second, it is asserted that organization according to
(2) A process idrreversibleif the specification of evolution 56t cycles is a plausible principle for the formation of

in the ensemble admits a changing set of microhistoriesy yar The map to enzymatic catalysis in biochemistry, while

and tthu?f thtethorde; ar}dh.tlme. requwerr]ner?ti of measu(;qf requires a conversion from thermal to chemical heteroge-
ments affect the sets of histories on which they are ma eneity, is an interesting as well as conceptually important do-

Under this definition, it is a tautology that the expansionM&in in which to argue that this is the case.
of which Eq.(2) lists the first few possible terms is general
for classically reversible processes. Hamiltonian dynamics
implies that the indexing of microhistories at any time has an
isomorphism to an indexing at any other time. Macroscopic There is a class of acoustic, ideal-gas heat endig2k
reversibility implies that the uncertainty of the ensemble iswith the following structure and properties. An engine con-
fixed; hence there is an isomorphism between any pair o$ists of a periodigtypically toroida) resonator filled with an
complete sets of state variables, such as those bounded atideal gas, and a stack of plates or pins in the flowstream of
after two different times. The technical challenge is simply tothe gas, with one end of each plate coupled to a source of
identify the isomorphism. Thus, the proper domain ofheat, and the other to a sink, as shown in Fig. 1. Thermalized
Jaynes’s statistical mechanics is the category of classicallphonons may be regarded as the only excitations in the sys-
reversible processes, and not just the static equilibria withiiem.
it. When the temperature difference between the ends of the

The question of when the state variables of either a replates exceeds a critical value, a classical traveling wave at
versible or irreversible system, bounded by some sequendbe fundamental frequency, and arbitrarily determined phase,
of times, retain a criterion afimplicity (such as time locality = spontaneously condenses from the thermal phonon bath. In
or spatial smoothnesss a separate and technical issue. Itthe ideal inviscid limit of the gas, the critical temperatures
demands that the state variables both capture the constrairge 0° for the (orthogonal opposite-sense waves, traveling
from preparation, and satisfy an ongoing restriction of form.in the direction of the temperature gradient. The traveling
When both requirements are satisfied, one may be sloppyave implements an idedCarnot-efficient Stirling cycle
about distinguishing what is intrinsic to the ensemble from[27], from which the work extracted is stored in increased
what are the limitations of the experimenter, and gloss ovein-phase magnitude of the existing wave, by an acoustic pro-
the distinction emphasized here. The special place of staticess akin to Dicke superradian28]. Significant fractions

A. The self-starting, self-organizing heat engines
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of this ideal efficiency have been achieved in realized en-a). b).
gines[29].
If small dissipation is introduced in the classical gain 3
equation as a regulator, via a Langevin equation, the critical
temperatures for the dual modes separate to nonzero positiv T " 4 2
and negative values, and the spontaneously formed soun
saturates as/AT—AT., where AT and AT are, respec-
tively, the imposed and critical temperature differences on

plate ends. This behavior can be derived from an effective S N
field theory for the fundamental modgal] of the Onsager- FIG. 2. The Carnot refrigeration cycl@), and its chemical
Machlup form[30]. equivalent(b). T is the temperature of the working voluntend of

The engines are self-organizing, by the criterion that theany reservoir to which it momentarily coupjeandSis its entropy.
classical-wave configuration has lower entropy than arf\lternatively, N is the number of some particle species conducted
isoenergetic thermal population of the fundamental wavéhrough the chemical refrigerator, apdis the chemical potential of
vector states. Furthermore, this SO process has been exp@r_ly reservoir with which it would |nst§ntane0usly be in equilib-
itly mapped to an equilibrium critical phenomenf20,21] rium. N_umbers on _the legs of tht_a chemlgal cycle correspond to the
with an extension of finite-temperature field theory methodssm1ges In enzymatic polymerization detailed in the text.
to incorporate heterogeneous temperaturése correspon- _ . o
dence of that method to E¢) is developed in Appendix F.  [20], and thus is not mathematically distinguished from a
Yet the organized state itself is nothing more than an asymflux of particle number(monomer or phosphate group
metric population of wave vector states for thermalizedacross chemical potentials. Figure 2 shows the correspon-
bosons. Formation of just such a current state can be repréence between the thermalemperature/entropy Carnot
duced in the appropriate linear oscillator model. cycle, and its chemicalchemical potential/particle number

counterpart. The legs in the chemical cycle correspond di-

rectly to the simplified steps in polymerization, as follows.
(1) A monomer diffuses from the cytoplasm to the active
A shared feature of the most commonly treated massgjte of an enzyme, where ammer is already bound. This
action self-organizing systems, such as Benard convectiogep is the intake of the monomer from a reservoir with
[31], the Belousov-Zhabotinsky reacti¢B2], and the irre-  \yhich the enzyme is in equilibrium.
versible(standing-wavgthermoacoustic enging83], is that (2) Whether at binding to the enzyme, or through activa-
organization depends intrinsically on diffusion in gradients.tion with a phosphate group, or through conformational
Taking these systems as models for the origin of biochemiczaéhange of the enzyme powered at the release of the last
order [2] presumes the associated intrinsic inefficiency ofcycle, the monomer is given free energy in excess of the
diffusion, in one form or another, as requisite to ordering. pound form in the polymer. This step effectively changes the
Even apart from the empirical observation that many bio-chemical potential of the monomer to its new, higher value,
chemical processes achieve remarkable fractions of ideal efn isolation from the(unactivatedl cytoplasmic population.
ficiency [34], the surprisingly mechanical sequence through (3) The enzyme, in lowering the energy barrier to binding,
which fundamental ordering operations such as enzymatiy|iows the monomer to hop into the bound form. Possibly in
cally catalyzed polymerization take place suggests that a de&gome combination with the next step, this is the rejection of
scription in terms of chemical engines powering chemicakhe monomer to the higher-energy reservoir.
refrigerators may be more appropriate. While this paper is (4) Finally the now @+ 1)-mer is advanced along the
not the place to justify such a description in detail, to appre4ctive region of the enzyme, whose configuration is then
ciate the applications of the model it is useful to understangetyrned to one that can accept another monomer from solu-
in W_hat sense polymerization is abstractly just another refrigtjon. Conformational(elastio energy may or may not be
eration process. added to the enzyme in this step, which in either case causes

The decomposition of the simplest polymerization modekne return of the monomer-binding site to the potential of the
has two pairs of reservoirs. One pair is the cytoplasmic sogg|ytion.

lution versus the formed polymer as distinct reservoirs for

monomers. The different entropies of arrangement for a, \iopg| NG ENGINE AND RESERVOIR DYNAMICS:

monomer in either reservoir gives an entropic c':o'ntrlbutlon to THE BLOCH CRYSTAL ENGINE

the chemical potential difference. The other pair is pyrophos-

phate versus orthophosphate as alternative reservoir statesA linear model illustrating the phenomena discussed up to

for phosphate groups, with ATP or GTP generally acting aghis point is shown in Fig. 3. It is built from an even number

the stabilizing reservoir for the energetic pyrophosphatévl of linear, quantum harmonic oscillators with identical

bond. The enzyme is a mechanical mediator that allows th&evel spacing. Two oscillators are considered to be the en-

phosphates to decay only in lockstep with incorporation ofgine, and the remaininlyl —2 are collected into symmetric

the monomers into the polymerized foifhl]. “left” and “right” reservoirs. The reservoirs have a literal
The essential point to appreciate is that in reversible SOinterpretation as plates of a capacitor, and the resonator as an

the entropy flux behaves like any classical Noether curreninductor, in a dilute-Fermi-gas limit where fermionic statis-

B. Chemical engine cycles in biology
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Yy so that in terms of the associated number operators
m=M1 | Ho=2J Ni(1— ycosk), )
m=l K
m=1 m=2 ... . L L .
with sum overke (0, ... M-=1)X2#/M*-, and similarly
0 for L—R.
Y X The coupling of the engine to the reservoirs is a simplified

version of the coupling used for real thermoacoustic engines,
although the latter, like lasers, have a nonlinear gain equa-
tion. As noted in Sec. lll, since the information represented
in the current itself is of interest, the form of the gain equa-
tion leading to it may be changed in this case without losing

R the effect. A convenient form comes from the interaction
Hamiltonian

FIG. 3. Diagram of the Bloch-crystal engine, to be compared g
with Fig. 1. Big circle corresponds to the resonator; its two excita- - \/Ecosa
tions are the fundamental-mode phonons of the low-energy effec- 0
tive theory. Axes of symmetry for spatial standing waves are :—g[a;[ag’-i-tanaoa;aé%— H.c], @)
markedx andy, and axes of spatial standing waves coupled to the
reservoirs are at angle and — 6, relative tox. Spatial modes in  where the standing-wave excitations at angte&, are cre-
each reservoir are indexed=0, ... M>R—1 in each of left and  ated by the operators
right sectors. There is a number-exchange coupling between stand-
ing waves in the resonator and the=0 spatial oscillator of the aI, EcoseoalJrsin Goa; (8)
corresponding reservoir. 0

— Taly ot oR
Hin= [agapta-yap+H.cl

and
tics of electrons can be ignored. Definitions and notation for

the quantum harmonic oscillator are reviewed in Appendix al eozcosﬁoal—sin foa), 9

A, along with a number of manipulations of scalar and vector

operators that will be used in the following constructions.respectively. Subscript 0 on the reservoir operators denotes
Definitions of coarse grainings, and the forms that will bespatialindexm=0, sincek=0 would make the Bloch ring

applied to this system, are given in Appendix B. pointless.g is the coupling strength of the engine to the
Elementary excitations along orthogonal axeandy in  reservoirs, and may be taken small or of order unity, as de-

the engine are created by two raising operaajrsand a;, sired.

respectively. These correspond to tkgecond-quantized The operators in the first line of E¢7) do not have or-

low-energy effective description of the thermoacoustic enthogonal canonical commutation relations at genégalso
gine in Ref.[21]. The Hermitian conjugate operators aé the second line gives an expansion in operators that do, with
and a)T, are calleda, anda,, and the excitation number op- symr_netric_and antisymmetric lowering operators in the res-
erators aré, andn, . In terms of these, the free Hamiltonian €rvoirs defined as
for the engine is just its total excitation number

L R
agta
. ag= ——— (10
Ho=n,+n,. 3 \/E
The reservoirs are given slightly more structure, as Bloct‘?‘nd
crystals, with the nearest-neighbor Hamiltonian ak_aR
A_ 0~ <o
L1 , ag= \/5 . (11
Hy= 3 fb-Jraltal i+aftah.] @)
m=0 Everywhere H.c. denotes Hermitian conjugate of the terms
. o . o that appear explicitly.
for the left reservoir, and similarly foL —R. mis periodi- The closed engine/reservoir system evolves microscopi-
cally identified, andM-=MR, so thatM =2M"“+2. cally under the Hamiltonian
The creation operator for a normalized wave vector state
in the L reservoir is H=H§+H5+HX+H. (12)
] M1 There is a spatial basis,y,m-,mR}, which naturally de-
alt= > e ikmglL (5 ~ composes into components on which heterogeneous environ-
k C m . . .
VM- m=o0 mental couplings can be imposedlternatively one could
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use{x,y,k-,kR}.) The excitations in these bases differ from KL —ef (101 2c0s0) 1, gL(15 g/ \2cosd,) (15)
excitations in the eigenstate basis by a unitary transformation - 0

of the raising and lowering operators, and this property leadgnd

to nontrivial flow of particles among the spatial or wave

number projections. KR= eB"(17g/2cosbg) _ 1—BR(1¥ g/\/2cosby). (16)

A. Preparation of heterogeneous thermal initial conditions If g/\/2cos#, is chosen close to one, the population in each
es_ector can be dominated by the symmettav-frequency
eigenstate to any desired degree, reducing the analysis of this
problem to that of single-particle thermal states. After all the
properties of that limit are understood, the case of gergral
etc., can be examined.

Not only x andy excitation numbers, but also thoselin
andr and various traveling-wave bases will be of interest in
he analysis that follows. Therefore it is useful to remark that
Il of these bases differ from each other only by unitary
ansformations of the creation operators, and it is shown in
Appendix D that the marginal distributions of any Gaussian
coherent-state densities are exactly thermal in any such
Hint, preg= — L[afaﬁ a:ra§+ H.c] bases. Further, the expected mean excitation numbers are just

' \/fcosao the diagonal elements ! in the corresponding represen-
tation [Eq. (D1)], so it is useful to define mean-excitation
matrices

A convenient separation of scales can be achieved, b
tween the fundamental oscillator frequen(et to one in
these units and the frequency of particle exchange, by tak-
ing the angled, very close tow/4 in the operating state. It
will be assumed below thaty</4, as in Fig. 3.

This coupling admits a very convenient way to impose
heterogeneous thermal initial conditions, becausefat
= /4, the engine operators are orthogonal, with canonica]
commutation relations. Therefore one can imagine startingr
with a “preparation coupling”

=— ﬁ[ala% ajag+H.cl, (19
0

wherea/ anda/ are defined as in Eq8) and Eq.(9), re-

spectively, except withd,— /4. The entire left and right and

sectors will then decouple, each can be prepared in a thermal —= R_1

state at an independently specified temperature, and the den- n"=(K") "7, (18

sity matrix for the ensemble will then be the product of den- . . - .
sities for the two sectors. Coupling can then be introducenﬁ)rom V.Vh'Ch all the engine excitation humbers can be derived
with perturbative strengtlh=g(1—tané,), by simply rotat- y unitary transformation.

ing the reservoir contact points slightly toward thelirec-
tion. B. Single mode-driven oscillations

The easiest case in which to understand the Origin of par- |t was actua”y possib|e to diagona"ze the preparation
ticle transport, and indeed the only case where time-locaHamiltonian in either left and right sectors, or in the basis
measurements will lead to reversible dynamicsMis=M® x5 v A.l. However, the thermal initial conditions of in-
=1. Letting the Bloch exchange coupling—-0, the whole  terest are only diagonal in the left/right basis, whereas the
preparation Hamiltonian can be written in matrix form as  eigenstates with 6,<w/4 require diagonalization in
{X,S9,Y,Ap}. The matrix representation of the dynamical

nt=(KhHt (17)

it —g/2cost, || & Hamiltonian is
Hprep=[a) @ L
—gl\2cosb, 1 ag
—rat 55 X T AT
cral ] 1 —g/\2cosb, [ a H=[ay a5 ] ~g 1]as +lay ap |
ar ag R|-
_ a
9/+2cosf; ! 0 1 —gtando|[ ay .
X 1
(14 —gtané, 1 ag)’ (19

Left and right eigenstate excitations are manifestly created o of
by operators @Ti agT) /\J2 and @;ri af)”) /12, both with ei- and its eigenstate excitations are created aﬁri(ao )IN2,
genvalues ¥ g/+/2cos6. with eigenvalue g, and @)+ agT)/\/E, with eigenvalue

It is shown in Appendix C that thermal densities can bel=gtané,.
written in terms of Gaussian integrals over coherent states, No difficulty is incurred because the basis in which the
and the notatiorK is introduced for the kernel matrix of the initial thermal projection factors is different from the eigen-
Gaussian integral. The eigenvalues Kffor homogeneous state basis. Appendix E shows that, when the coherent-state
thermal densities are the inverses of the mean occupatioepresentation of thermal density matrices is used_fand
numbers in the eigenstate basis. In the left and right prepaR sectors, the density which is their product simply defines
ration bases, these take the approximate forms at high tenan M-dimensional kernek, in which the factor matricek*
perature, and KR become diagonal blockgEq. (E6)]. The partition
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function has a basis-independent definition, from which theat any time. They are also, of course, redundant, since a
expected excitation numbers at any time are easily extractegle||-defined set of temperatures exists in any basisnfor

by suitable similarity transform ok or its inversen. related by unitary transformation to E@®2).

The t=0 transformation from {l,Ly,r,Ry} to The question of interest is when these temperatures admit
1%,S0,Y,Ao} Operators puts the mean number matrix in thea projection of this coupled system onto a product of engine
representation and reservoir components, in which classical properties of

the components are sufficient to specify the constraints on
(20 the whole distribution. If there is always such a projection,

one is free to restrict to equilibrium state variables, and as-

sign them equations of motion as in the dissipative models
where the blocksi- andn® are defined by Eq17) and Eq.  [2]. Here one can show explicitly that, in terms of the

(18), respectively. “charge densities”n;,n, ,n,,ny,ng, Nk, that will not be
Since the eigenstates advance their phases according @ssible. It will be possible to project into “system” and
the eigenvalues of Eq19), n evolves by similarity trans- “environment” components, but in the system projection one

form with the diagonal time-evolution operator. Because ofmust admit as state variablesrrent densities as well.

the interaction Hamiltonian used to define the preparation of The entropy of the marginal distribution of any identically
the sectors, the full eigenstates are superpositions of the segrermal mode is defined in terms of the mean occupation
tor eigenstates with the same engir_le/reser_voir symmetry (umber in Eq(C6). The condition that occupation numbers
asym_metry._ln other words, in the eigenbasis, the block facmeasured in a projection onto components be proper state
tors nt and nR are themselves diagonal, and the only non-variables is equivalent to the condition that the sums of en-
identity contribution to the similarity transform comes from tropies computed from them equal the true entropy of the
the energy difference matrix distribution over microhistories. It is clear why sums of mar-
ginal entropies need not be conserved in general. The opera-

_ 1|/nt+nR nt—nR
nOEE

nt—

nR nbt+nR

E. Eo— 1 21) tion of factoring into component&eplacing joint distribu-
ATESTYV -1\ tions with products of marginalss a coarse graining, which

can lose information about system/environment correlations.

Supposing that the coupling between thendR sectors The condition of thermal reversibility of a factored sys-
was turned on at=0, the number matrix at timg called tem, taken as a commonplace in equilibrium systems, is seen
n,, is just in dynamical systems to place a delicate requirement on the
choice of state variables, even when the set of microhistories
1 nt+nR (nt—nR)e 1(Ea~E9t is unchanged over time. It is a condition that a sum of entro-
ntzz Ry i(Ea-Eot — pies after marginalization be conserved in time, as the dy-
(n=—n7)et=A n-+n namics changes the relation of the distribution to the compo-

(22) nent projection.

In the example here, the marginals do recover a conser-
vation law asg/\/2cos#j is taken close to one. In that limit,
the low-frequency states account for essentially all of the
population in any basis, and there isredundancyof the
information contained in the reservair=0 and the engine
states. It then becomes possible to use reservoir marginal
distributions asproxiesfor part of the order in the engine,
allowing engine bases to be explored to account for any ad-

The M-R=1 model is intermediate between the simplic- ditional order not measurable in the factored reservoir mar-
ity of an equilibrium system, and the complexity of the ginals alone. Note that this limit is not necessitated by any-
MYR>1 models, which though formally reversible by the thing fundamental; it is used to compensate for the prejudice
definition given in Sec. Il, have classical state variables thathat, because the marginals are thermal, the constraints can
are difficult to extract from late-time measurements, andoe inferred from their temperatures alone.
whose definitions do not readily generalize beyond this ex- Quantum mechanically, standing-wave and traveling
ample. AtM-R=1, one can see why restricting to equilib- wave excitations are not independent in an engine with only
rium state variables is inadequate, while keeping the true séwo degrees of freedom. However, classically, there may be
of state variables time locélhough time dependentso that  information represented in the mean excitation number in
they have a natural description as indices to macrohistoriexaine basis, which is only contained in the joint probabilities

It is shown in Appendix D that the marginal distributions across different excitation numbers in the other basis. Thus
for which matrix (22) gives mean numbers are all exactly exploring the various number bases in the engine will be the
thermal, in any excitation basis, at anyEach marginal has key to recovering an approximate description of the com-
a well-defined effective temperature, with the expected relaplete constraints on the distribution of interfering mi-
tion to its mean occupation number. Thus temperatures afrostates. The necessary excitations beyond those already
modes contain all of the information restricting the ensembleconsidered are created by the operators

It is clear that under transformation back{toL,r,Rg}, the
mean| andr number densities oscillate with frequeney
between the values induced by the two initially imposed tem
peratures. Th& andy mean numbers meanwhile remain con-
stant at the average dfandr means.

C. Bases for entropy accounting
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al—ial structure of the dynamics, it will generally be possible to
ai: X y (23 preserve factorability if one can use time-nonlocal measure-
V2 ments. First, though, having understood the origin of a need
for current-state variables, it is of interest to extract the clas-
and sical and self-organizational interpretations of engine cycling
bt for theM-R=1 case.
. —la,tay
al=—"—-—. (249
\/E D. The heat flow interpretation
It follows from the commutation relations that all of Entropy change always accompanies the transfer of exci-
tations. It is therefore possible to assign an entropy flow to
n +n — n|+nr—n0+n0 n++n (25) various particle currents, which then takes on the interpreta-

tion of heat in classical thermodynamics. To show that this
simplified model is appropriately interpreted as an engine/
reservoir system, it is necessary to show that the heat flows
obey those classically associated with engine cycles.
Because the model has been constructed with a topologi-
cal correspondence to the thermoacoustic case, there is a
natural phenomenology of thermoacoustic engine transport
to map to it. The traveling-wave statesand — correspond
to the transporting excitations. Classically, the entropy trans-
27) ported from theR to the L reservoir is proportional to the
excess number of over — excitations, while the transport
from Eq.(22). Furthermore, because the populations of bothfom L to Ris proportional to the- over + excess. Mean-
engine and reservolr andR modes come entirely from the While, the rate of growth of the- excitation number is pro-
interference of the same pair of states_lgf-ﬁg)tw(ﬁ, portional to the temperature differenceR®bverL, while the

= . . . —  growth rate of— is proportional to thel —R temperature
fn')t This IIS how th? Chr?dlace 3f couhplmg mak_[;_;] andng difference. This model is linear, so there will not be the ad-
informational proxies for théandr coherence in the engine. iional proportionality of+ and— growth with the current

Note thatn, —n_, from an equilibrium point of view, is amplitudes of+ and —.

a current variable, not a charge variable. It is necessary in  QOnly the total particle flow into reservoirs will be directly

Eq. (27) to track the constraints on initial temperatures atconstrained by the local interaction Hamiltonians. However,
times vt=(2j + 1) for integerj, and yet is not within the nt, R

MER=1, nf—nt, nR—nR, while also ng)e=(n
set of equilibrium densities used as default for state vari- — o~ 0~ b5 )= (N,
ables. ;). By Egs.(26) and(27)

At high temperature, the thermal entropy of EG6) (for

are equal and time independent, and from E9) that n,

—Fyzo. Unitary transformation to ther,Lq,Rq, or from
these to thet,— bases at any time, gives

(M —ny)y=(n—n,)o coswt (26)
and

(ny—n_)=—(n—n)gsinvt

any one components asymptotically equal to the logarithm i iL_ER = V(i+ _E‘ (31)
of the mean excitation number, so to second order in fluctua- dt\ nt+nR n.+n_
tion amplitudes,

g and

Gi[S(nG)+S(nG)1#0, (28) d/m-n | (mem

0\, +n) et %

and also s

d . Equation(31) assigns particle transport between the res-

a[S(m)JrS(n,)]#O, (29 erv0|rs to an invariant number v per traveling-wave cycle.

Sincen. n,— n_, the net current, is also the mean number
though total excitation numbers in the two sectors are preconstra|nt bIaSIng the marglnal distribution in the reservoir
served independently. The phase offset between the two odway from the equilibrium Gibbs distribution, it is the con-

cillations, however, implies that to the same order straint on which theorder growth in the engine depends.
Equation(32) correctly recovers another aspect of the real

thermoacoustic phenomenology: that the growth of mean en-
[5 ng)+S(ng)+S(n,)+S(n_)]=~0. (30 ergy in the coherent state is proportional to the driving tem-
perature difference, as for an engine with fixed entropy trans-
Under almost any weakening of the restrictions in thisPort per cycle it must be.
example, the basis used here will no longer yield a reversible To infer local particle flows between the engine and the
description, and the informational entropies will be obscured€servoir, it is natural to split the interaction Hamiltonian as
by a larger background of fluctuations due to inadequacies of
the coarse graining. However, with some sensitivity to the Hin=Hint Hixe (33
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with ds; ds- ds 23
. dt " dt dt 43
H-=————[a} aj+H.c. 34
" \/Ecoseo[ %0 ] 39 and likewise forL —R.

Since the whole-system sum of marginal entropies is con-
and served only to second order in fluctuations, it makes sense
only to expand Eqsi41) and(42) to that order, giving

g
R___ 9 r.t R _ .
e I L (35 42 dn @
e 77 (nt+nR) dt  “(nt4+nR)2
In the Heisenberg picture, this leads to the expression for the R
change in the number of particle$, due to interaction with X[(HR—HR),N D). (44)
n,, as
. In the g/\2cos,—1 limit that is dominated by a single
dnt Lo~ mode in bothx andy, the operator algebra of E¢33) gives
gr = [Hine.n+ 1, (36)  the simplified relation
and the change in® from interaction withn, as i([(Hp—HR). (N +n)y=w(n,—n_), (45
dAE . plus error terms of order-1g/+/2cosé, relative to the terms
T Ei[HiFf,t,m]. (37)  that are kept. A similar expansion for the antisymmetric

number sum gives

The sum of operators interacting with. satisfies the engine

conservation law {[(Hi=H, (N =n)])
G diR I =2g[(n,+1/2)—tanbp(n+1/2)].  (46)
— I oi[Hn, = —, (38) —
dt ~ dt dt Using Eq.(40) for n_. , it follows that
while the sum fom" satisfies the reservoir conservation law s 1 TR
— (S +SR)=— = non
dit  dit  dnt de=r dt nt+nR
—_t ——=—. (39 _ _
dt ~ dt dt [andy(n+112)~ (n,+1/2) -
Both conservation laws remain true at genevltR, and H><+Fy .
there are symmetric constructions for the)(andR sectors,
respectively. Classical Carnot's theorem would have E47) identically

Because the entropy change for a thermal distribution is &ero, because for a reversible process the entropy transport
function only of the mean excitation number, the splitting ofout of R by (+) would exactly equal that inth, so the sum
particle currents allows a similar splitting of entropy changesf two inward entropy transports would have to vanish. In

into “flows.” In a large-n limit, where this problem, Eq(47) has both. symmgtric anq antisymmetric
nonzero terms. The symmetric term is precisely the informa-
— tion (negative of the change in entropgtored in the+
dSn) 1 . . )
= (40)  standing wave, the necessary correction to the classical theo-
dn n rem needed to treat the current itself as a thermal object. The
. _ . second term is totally*= antisymmetric, and describes an
the change in thé reservoir entropy fromt currents is artificial entropy transport which exactly cancels between the
R two traveling waves, and thus is never actually delivered to
ds;  (i[HL.n. D) either reservoir, or to the engine modes either.
dt L (41) At this point it is useful to make a formal distinction

between those entropies considered informational in origin,
and those conventionally regarded as thermal. The thermal
entropies that pass through an engine come from those cor-
4R (i[HR ; 1 relations necessary to_specify the state of the environment.
R nt> 7 (42) They are originally projected onto the measurements of one
dt nR reservoir and later transferred to the other’s, but never re-

solved in the engine at any point. The informational entro-

By construction, pies are the uncertainties of the actual state of the engine,

and similarly for theR reservoir entropy
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which may change if the engine’s composition is measured 03 =
as part of the system characterization. a5t \ /\J/’\\ NTANEYAN
The informational entropy change is the sundS, /dt v‘\_/‘\/m NN ~S
—dS_/dt, from Eg. (44) and its (—) counterpart. By Eq.
(27), it is quadratic in fluctuations, and it has natural inter- 0.15
pretations in terms both of self-organization and of flows. o1t k
The reduction irS, +S_ is just the knowledge gained about
the system from the constraint on its current. A state with
zero mean current maximizes what would normally be com-
puted as the “equilibrium” free energy. The imposition of a
mean current as a constraint would produce just the distribu-
tion and entropy computed here as its maximum-ignorance
solution. In this case, a constraint on the current excess
arises through the dynamics, as the expression of the initial 0z | . . s . - - .
reservoir heterogeneity, and so appears self-generated from t x 104
the perspective of the time-local coarse graining.
Meanwhile, the thermal entropy passing through the en- FIG. 4. Changes in total entropy from their initial valuekS],

gine is(one half of the antisymmetric combination in the combined engine and reservdiapper curvel and in trans-
ported entropy per degree of freedomdS—dSF)/(M-R+1)

(lower curve$, versus time in units of cycle periods of the free
oscillator. Model values areM“R=30, y=0.3, g=0.1, and

dsTOT

!/
'I
02 I
|
o)
I

0.05
ok

0.05 |

3=

ot

0.15

@s*- asPyMLR 5 1)

L _ R ; L Ry~
gt(S T SH= (nt+nR) (IL(Hi=Hin.n 1) tanf,=0.995 ory="5x10"*. Initial conditions areTg=1100, T§
=900, in energy units where the free oscillator energy is 1. Solid
(nt—=nR®) dn, curves use sums of thermal entropies for standing-wave occupation
—R2 dt (48 number (k) states in the reservoirs, while dashed curves use
(n=+n") position-occupation states. The = basis, which is well behaved at

MLR=1 is used in the engine in all cases. The whole system

Making use of the same operator identities and single-modentropy depends strongly on the representation of the reservoirs; in

limits as above, this exchanged entropy evaluates to the k basis, there is no entropy change in the transverse standing
waves, which do not project on the=0 coupling, while them

_ _ basis is repopulated dynamically at every position, and thus shows
tanfy(ny+ 1/2) = (ny+1/2) larger overall entropy increase. Thansportedentropy is indepen-
dent of this distinction to the accuracy of the simulation, and may

d
gi(S:—sh=-2g

n,+n,
oy be regarded as a property of the state of the engine. Despite the
n.—n. nt—nR 2 complex, apparently irreversible behavior of all of these entropy
+ - . .
Tl =—— v =] - (49 curves, the temperatures corresponding tckthecupation numbers
ny+n_ n-+n oscillate harmonically betweeR; and T§, for all time.

The first term is again & -antisymmetric combination asso- E. More modes and nonlocal state variables

ciated with nonuniform coupling to the standing waves. It \whenM“R>1 or g/\/2 cosfy<1, there is no way to in-
could be set to zero with suitable populationsx@ndy, but  guce even quadratic-order entropy conservation, for any sum
never actually accumulates anywhere and is essentially af marginal entropies computed only from time-local mean
artifact. The leading-order entropy actually exchanged is linexcitation numbers. While the sum of reservoir entropies is
ear inn, —n_, thus obeying the thermoacoustic Carnot re-constant at linear order in fluctuations, the “exchanged”
lation. The quadratic correction is of the same order as théhermal entropy from each reservoir component is propor-
informational entropy, and describes how it is drawn differ-tional to a separate traveling current in the engine. These
entially from the two reservoirs. currents all have different effective temperatures at any time
This model, then, does strictly what was described above, even though their distributions combine to form a thermal
When an appropriate basis is specified, the engine travelindistribution for total traveling current, which may have yet
modes appear to transport information about the environmeranother, arbitrarily related, temperature. The resulting picture
from one reservoir to the other in the process of supportings one in which both classical Carnot’s theorem and all in-
particle currents. When the temperatures differ, it is not enformational entropies are lost against a background of en-
ergy, but thermal entropy whose flux is conserved at leadingropy fluctuation created by inadequacies of the coarse grain-
order. The engine uses the resulting excess of energy to auing. At early times, the entropy change is always an increase,
ment its own structure, or vice versa. When engine order isecovering the usual picture of an irreversible process, as
growing, though, classical Carnot’s theorem is not exactlyshown in Fig. 4.
respected. The entropy the engine rejects at the low- This case illustrates the distinction between reversibility
temperature reservoir is slightly greater than what it takes irdefined by conserved indexing of microhistories, as in Sec.
at high temperature, by just the change in its own structurall, and defined by the limitations of the experimenter. Under
information. the former, the system is identically reversible, while under
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the latter, it would be called irreversible. Yet if one were towhich that difference is the sole constraint. Similarly, let
Fourier transform the time series of the component occupaT+_VOEH+(o)_H_(o) denote an initial value constraint for
tion numbers, these could be decomposed into the slowly+) or the whole history that follows from that constraint.
changing occupation numbers of tkatates, which together In terms of these, the projection of the matrixonto the

Further, while such a decomposition cannot be I‘ﬂadally raising and |Owering Operators’ becomes
in time, it can be performed within a finite time interval for o o o
any fixedM "R, Thus a more sophisticated experimefits] — 1| nytng N oting_go

would recognize the actual reversibility of the ensemble, no:2 - = P . (50)
while a less sophisticated one would not. Miro= 1N+ -0 N1 My

The late-time behavior of Fig. 4 illustrates well the limi- gince these occupation numbers are already true eigenvalues,
tations of phenomenological treatment of entropies. There igyen though they are referenced to projections onto engine
no violation of the second law implied by the significant states, they account for all system correlations, so reservoir
decreases of the coarse-grained entropies, since these @&upation numbers need not be listed again.
loose constraints on the true uncertainty about the distribu- The entropy of the most general configuration constrained
tion. Conversely, a treatment thdefinedentropy functions only by number density, and represented with a Gaussian-
solely to be spatially and temporally local, and monotoni-¢oherent ensemble, is given by BE12 in terms ofn of

cally increasingas in Ref.[8], Secs. 5.6 and 5)/to satisfy . :
the second law as if it were a statute, would be a measure (I)‘:fq' (50). If an averages value is defined as

something else besides uncertainty, as entropies are properly _ B+ R
defined to bd35]. B=—7%—" (51
V. GENERALIZING THE TIME-INDEPENDENT ENTROPY it is possible to write the equivalent of an equilibrium free

The high-temperature limit of the linear oscillator model €"€"9Y for the heterogeneously constrained system as

has been explicitly constructed with a partition function in- A alL, ARR_
distinguishable from that for an equilibrium system, except BA=pTN"+ NS, (52
in the inte_rpretation of its parameters as temperatines Elementary algebra shows thstis maximized, andA
longer having only one valyer occupation numbergiav- minimized, atﬁ+,,0=0. Along this curve, the trace expres-

Ny explicit dy”am'C‘fS The 'Ogé‘r'thm of the partltlor) func- sion (C12) for Sfactors, and the free energy decomposes to
tion must then yield an effective potential generalizing the

0o ' . the sum of equilibrium forms
Helmholtz equilibrium free energy to one for a microcanoni-
cal ensemble ofistories in which the constraints from het-
erogeneity are explicit as in Sec. Il.

At this point, it is convenient to introduce some case-|, this sense, along a hyperplane of the possible classical
specific notation, and to correct a technical omission that haéonfigurations, the free energies look exactly like their equi-

been committed up to now, in computing entropies from thgjpriym counterparts, even though the system is dynamical
projections of occupation numbers onto engine or reservoikfiert— 0.

components alone, which differ by factors of 2 from the true A is minimized by an order parameter that refers to a

occupation numbers of the eigenstates responsible for thgne gependent classical history. It is instructive to ask what
oscillation. At g/2 cosfp—1, the sum of entropies com- yoyd be the closest approximation to this solution, obtained
puted in this way differs from the true system entropy byis one were to exclude explicit time dependence from the free
constant offsets-In2 in the high-temperature limit, so the energy. In this problem, that amounts to taking some static
conditions for reversibility and results about entropy transprojection of A, and trying to interpret it as an equilibrium

e o, e enegy: The vy ofEg. (5 was chosen 50 tat ol
9 ! the heterogeneous Legendre transform pair, and the depen-

sumed that the experimenter has multiplied the componen . .
X R . ence of the entropy on the time-varying order parameters,
occupations by 2, and performed the trivial integration over . e
would be excluded from the static projection.

wi?hugrﬁ)loprlfﬁggrit?ieeiﬁ/]gllgggeﬁ';z ?g?én Oaf ?ﬁ?bfg-gﬁnx This choice of “effective” equilibrium temperature leads
y 9 j Proj C{o the expansion

matrix, which gives the total occupation number, is then de-

BA— B-AG+ BRAT. (53)

loted_HTE_FﬁFy, while the time-independent difference _ 1 g-—pR\ 1
Nyy=Nx—Ny. A=2n7— =Syt m anr,O_ =[S—Sstad,
The differences, betwedrandr or + and — sectors, are B B +B B (54)

functions of time, and as such are not suitable order param-

eters if not so referenced. Therefore lef ¢=ni(0)  whereS,.=S(n \N4,,0,0). Equation(54) is the specific in-
—n,(0), denote either the value of the number difference atstance of Eq.(2) for the linear-oscillator model am“R
a reference timé=0, or equivalently the whol&nctionfor =1.
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Now, the correctdynamical solution from Eq.(53) leads  representation of the partition function. The initial conditions
to a total number of particles inandy of it specifies are all the same, though. The construction of Sec.
1 of Appendix F gives a general relation between the uncer-
- 1 1 tainty measures over histories examined here, and the classi-
nr— E * E’ (59) cal action from which one generally expects to derive revers-
ible dynamics.
evenly divided between the two modes and time indepen-
dent. In contrast, direct minimization of the first two terms of VI. DISCUSSION
Eq. (54) gives the expected total number

— E_<i+i) BB\’
e s ) |

A. Relation of entropies to complexity

This paper treats the formation ofder in reversible sys-
(56)  tems and, when a component-projected set of state variables
can be found, uses the decrease in entropy in some compo-
The result(56) is clearly inconsistent with the andy par- nent as themeasureof its increase in order. In cases like the

ticle numbers that would be observed, indicating that th her'moacoustic engines, where t'he order accompanies the se-
static parts of Eq(54) are not the “best” equilibrium ap- ection of a phase f_or the classical wave, creation of order
proximation. accompaniesnnovation (emergence of the phase as a state
variablg, and with thatcomplexity It is important to note,
though, that order as measured by a decrease in entropy does
not necessarily imply increase in complex|[t¥8]. Once a

. hase emerges as a defined property of the ordered system,
alone would give the correct value of batrandy numbers ?urther incregse of the amplituge c?f th)é condensed waveyonly
from Eq. (56). In that case, however, the r, + and —  jncreages order extensively in the energy, without any ac-

numbers would be equal, and the entropy higher than any qlymnanying process of emergence that could be interpreted
the best-characterized instantaneous entropies in the dynangé innovation.

cal case.

This alternative between two mistakes is characteristic of
the equilibrium interpretation of systems whose order is
maintained by heterogeneous boundary conditions and in- Many treatments of entropy in SO have been motivated
duced currents. For the naive mean intensive variable, they Schralinger’'s book[36] which proposes that living sys-
expected extensive variables are wrongly predicted. For thtems reject entropy to an environment, in apparent violation
intensive variable that predicts the correct extensive value®)f the second lawsince the living interior is already more
the predicted entropy is higher both than the true véheze  chemically organized and that this is what distinguishes
the matrix tracg and than the function computed from the living from nonliving matter. Analysis of SO in terms of
measured values of the equilibrium state variables. Sectio@arnot transport shows clearly how this conclusion can be
VI will mention some important cases of such misanalysis. unwarranted. Both the environmefihe reservoirsand the
system(the resonator modgsare themselvesompositesys-
tems. They can sustain either charge or current separation

. precisely because, uncoupled, there is no conduit for relax-

Equation(54) may be evaluated as a generalized Helm-ation of either without the other. This kind of coupling is
holtz free energy of configurations at any time, because thgyactly the condition of the cellular interior and its chemical
argumentsny, o, N4 _ o refer to complete histories, whose environment, with the cellor mitochondrial membrane me-
projection onto all such configurations are known from Eg.diating much of the energy transfer. The dynamics of engines
(22). In a less trivial system, where the evolution of the clas-can reject entropy to the environment while lowering free
sical state variables could not be so simply derived, it wouldenergy, but not relative to those states that the system and
be desirable to have an extremization principle that deterenvironment could attain independently.
mined the equation of motion, or equivalently the transfor- Said more generally, while thi@int states of the system
mation rule for the effective potential. (the cellular interioy and the environment may evolve er-

Such a dynamical principle is derived in Sec. 1 of Appen-godically, thus permitting the substitution of time for en-
dix F, from the partition function of the preparation, and thesemble averages, trmmponentprojections of those states
time-loop S matrix that defines the microscopic evolution of do not evolve ergodically independently of each other. Thus
the eigenstates. A hybrid effective potential is found, whoset is important to separate the intrinsic uncertainty of an en-
real part is a generalized Helmholtz potential for the initial semble(such as the set of viable molecular arrangements in a
conditions, and whose imaginary part is a background-fielgparticular cell, from ergodicity of the dynamics, which may
effective action for the evolution forward from them. The be very different for parts than for the whole.
effective potential is slightly different from E@54), being a Another feature of the model used in this paper was spe-
Legendre transform in the exponentials of the inverse temeifically chosen to match the energetic structure of photosyn-
peratures, rather than in the inverse temperatures themselveisetic life. Without biochemistry, the electronic transitions in
which is conveniently performed on the Gaussian-coherenterrestrial matter excitable by visible light are largely un-

A better approximation could be obtained by settinEZ/

=1/8-+1/8R and incorporating a constant termn(3"
— BR) into the “dynamic” corrections, so that the static part

B. Biochemistry and ergodicity

Time- and temperature-dependent potentials
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coupled by quantum selection rules from the vibrational andrhe number operator is defined as
rotational excitations of the 300 K ambient microwave spec-
trum. This state corresponds to the preparation conditions in n=a'a. (A4)

the model, where orthogonal engine stgtee * 6, standing . . N ) o
waves are, respectively, in equilibrium with their reservoirs The interpretation od',a as creation and annihilation opera-

at different temperatures, but induce no coupling between th{ors[24] will be natural in describing the effective theory of
reservoirs. The emergence of biochemistry solves the diffiengines or.C circuits, in which case andp become the
cult problem of overcoming quantum selection rules withfield operator and its conjugate momentum.

high throughput, converting visible photons to redox couples The one-particle vacuum state is defined by the operation
[37], whose relaxation in steady state ultimately reradiateg|0)=0/0), and the eigenstates of the number operator are
entirely in the vibrational and rotational bands. (@

n)=
C. Generalized flow ground states | ) \/n—|

|0). (A5)

It has been demonstrated in this paper that currents can B8§,s commutation relationAl) then gives
classical state variables, and that, in general, they are the
conjugate extensive variables to heterogeneous temperatures ﬁ|n)sn|n). (AB)
or other thermal potentials imposed by the environment. It is
natural to call the extrema of these dynamical effective po- A scalarcoherent statés defined for any complex number
tentialsgeneralized flow ground stateShey have the same ¢ as
relation to microhistories as ground states have to configura-
tions in equilibrium, namely, as minimal sufficient statistics 62 Zo&n@hn 62 &
[17]. When they can be computed, they have the important |&)=e" 1 ngo T|0>Ee é ngo \/?W-

o0

feature ofquantifyingthe energetic preference for states as a
. . ; (A7)
function of flow variables, as it has so usefully been com-
puted for states in equilibrium. It is an eigenstate of the annihilation operator, with
ACKNOWLEDGMENTS al&)=¢[¢). (A8)

| am grateful to Cosma Shalizi, Harold Morowitz, Anita From the definitions of the position and momentum opera-
God, Walter Fontana, Jim Crutchfield, David Feldman, tors, it follows that the expectations
David Krakauer, and Alfred Huler for discussions and sug- .
gestions on the manuscript. (&x|é)=Re(£) (A9)

and
APPENDIX A: HARMONIC OSCILLATOR DEFINITIONS

AND NOTATION (&|pl&)=1Im(&). (A10)

This appendix establishes definitions and notation forT
one-dimensionalscalaj and M-dimensionalvecto simple
guantum harmonic oscillators. Special attention is given t
coherent states, and convenient ways of constructing them
the vector case.

he coherent states correspond to “classical” wave packets
under the correspondence principle, and the expectation val-
Qes (A9) and (A10) evolve according to the equations of
fotion of a classical simple harmonic oscillator.

The coherent-state expectation of the quantized version of

a classical Hamiltonian is
1. One-dimensional oscillation

The algebra of the linear, one-dimensional quantum har- (EPC+P? &) =(&n|é)+3=|é*+3. (A11)
monic oscillator is generated by a raising operatrand its

Hermitian conjugate lowering operatos, [38]. These are
normalized by the commutation relation

The expected excitation number &2. Excitation number in
coherent states is Poisson distributed, with the probability of
numbern in stateé¢ defined and evaluated as

[a,a']=1. (A1) 2|¢%"
N . P(n)=[(gn)|>=e 1" —— (A12)
In terms of these the position operator is n
x=1(a+ah), (A2) 2. Oscillation in more than one dimension

Vector simple harmonic oscillators are defined by raising
and the momentum operator and lowering operators with subscrit which create exci-
] tations independently in some numbérof dimensions. The
I vector ground state will be denoted as before, and eigenstates

N _at
p=g(a-ay. (A3) of the vector number operator are now indexed by a vector-

N
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valued excitation number, which will again be denoted reservoir components, and in which heterogeneous prepara-
With proper contraction rules of row with column vectors, tion conditions are block diagonal. Geometric objects &%e
this will create no confusion, because the vector oscillator isave component representations in any basis, and thus define

an exact formal extension of the scalar case. the conjugate transformation rules for the complex vegétor
Vector number states are created by the product of raising}:agv nuvumgmzakﬂ_
operators The number operator for excitations of Hamiltonian
M gy eigenstateu is defined a1, =a’,a* (no sum. The Hamil-
Iny= 11 |0). (A13)  tonian assigns energy o excitations as
m=1 /N,
[H,a]=E,a], (A19)
Coherent states are indexed by a ve@avith complex co-
efficients, and created from the vacuum by and hence can be written
- 2 = (AR .
|&=1] e 172> —=——10). (A1) H=> E,n,. (A20)
m=1 nm=0 Ny, “
The basis of excitations indexed hyis calledorthogonal States evolve in the Schiimger picture under the time-

if raising and lowering operators at differemtcommute. In  evolution operatore’™t. When this is applied to coherent
an orthogonal basis, it is very convenient to define the constates, the subscripwill be introduced as the time index, so
traction agza;rngm as the raising operator for an excitation that

along directioné. These may or may not be canonically ‘

normalized, depending on the value |¢f. The reason to |&)=e""|&). (A21)

introduce them is that the multinomial expansion
|&) is created at any time by the same relati@i6), with

N! time evolution introducing only the phase shifts
b= 2l e |
{m= s nm=N} 11 - = = sHIMim= S{LEQIE”tgg- (A22)
(A15)
implies the compact representation APPENDIX B: DENSITY MATRICES
AND COARSE GRAININGS
o T\N
a . . _ -
|§>Ee*\§\2/2z %m). (A16) It is useful to introduce the definitions of coarse graining,
N=0 :

and the examples that will be used in the text, because prob-

ability notation arises that will be used in later appendixes.
Thus any vector coherent state may be regarded as a scalghe starting definition is that, fof{ )}, some collection of

coherent state created by the appropriate raising operatqf,antum states, any density matrix can be written as a sum
The magnitude of occurring in the normalization is just the ot guter products

scalar producté|?=¢'¢.

3. Basis transformation and time evolution PEEM/ Pl Y)Yl (B1)

The full commutation algebra in an orthogonal basis of
canonically normalized raising and lower operators is de- A coarse grainingof p is a map fromp to some other
fined to be densityp which averages out some of the informationgin
m ot m [14]. A particular map used in the text will be called the
[a".a3]= 8y . (A7) annularcoarse graining, defined in terms of a set of number

The lowering operators may be transformed to any other bas-tatesl n) by

sis by a unitary transformatioa*=v*,,a™, if the corre- _
sponding raising operators undergo the inverse transforma- pa= >, Tr(pn)(n])|n)(n|=> P,(nm)[n)(n|. (B2
tion al=a/v",. It then follows that in the new basis n n

(A18) This map removes information in the relative phases of dif-
ferent|n) components, in whiclp may not be diagonal. The

so the transformed operators are again orthogonal and cBature of the averaging can be understood by applying it to

nonically normalized. In the appendixes and the text, superthe outer product of a coherent state. Such a product corre-

script greek indices will be reserved for operators which creSponds to a ball in a classical phase spacextedp values

ate eigenstates of some Hamiltonian, and subscript roma®f Whose center are the real and imaginary parts of some

indices will denote all other bases. Typically these will becomplex vectoré. If this ball represents, the coarse-

bases in which a coupled system factors into engine andrained densityp, uniformly populates the annulus in the

[a“,al]=v*[amal v, =v ™= 6"

v
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phase space with mean radié, and radial variance com- APPENDIX C: THERMAL DENSITIES AND THEIR
parable to that in the original. COHERENT-STATE REPRESENTATIONS

A few lines of algebra show that maB2) manifestly
satisfies the two conditions on a coarse graining set forth in
Ref.[14]. It is idempotent,

All the classical states in this paper are built from thermal
density matrices. These are maximume-ignorance distribu-
tions consistent with fixed expected enefdy,19, and are

~ o~ defined in terms of an inverse temperates
p=p, (B3)

and states made typical by the coarse-grained distribution are PE=7 z |n><n|ex;{ BZ n,E ) (Cy
also typical in the originalfine-grained distribution:

~ -~ o~ The normalization factoZ is called thepartition function
Tr(pInp)=Tr(pInp). B4  and equals

The entropyof any density is defined as
z=>, exp( -8, nMEM) . (C2)
n M

S,=—Tr(pInp), (B5)

so it follows that the entropy of the coarse-grained density>INCe the energy eigenvalués, will be given units of fre-
under the same definition is quency,3 will have units of time. , ,
Thermal densities may alternatively be written as inte-

grals over outer products of coherent states. In a basis of

S;AE—E P,(M)InP,(n), (B6)  eigenstate excitations, the vector thermal density takes the
" form
a function only of the occupation-number probabilities. The 1 ePE,
conditions defining a coarse graining, together with the con- pﬁz—f (H —dg df"“)e SR, (CI
cavity of the logarithm, imply thaS;,AZS , for anyp. Z

A second stage of coarse graining can be appligel toy A kernel matrixK is introduced by the Gaussian integral,
marginalizationof p, . The marginal probability of occupa- which is diagonal in the eigenstate basis, with eigenvalues
tion n,, of some single component in the densityp is  K“=§*(efFx—1). ThisK may be checked to recover the
defined as thermal occupation number probabilities, by evaluating the

trace defined in Eq(B2),

Py(Nm)= 2> P,(n). ®)
em Ppﬁ(n#) z,n, j ePFud| 4|2 exp( — ePFul £4[2)| 4| w.,
Marginalization of the probability of vector excitation num- (C4)
bern is replacement of the joint probability with the product
of component marginals, denoted Here all¢ component integrals evaluate to one except at
and the normalizatiorZ,, is the partition function for the
~ _TT S density over theu eigenstate alone. The exponential integral
Pp(n)_l;l Pp(Nm)- (B8) diff_ers fr_om n,! only by the normaliz_ati_on _exp(ﬁnMEM),
which with Z,, recovers the thermal distribution.
The marginal coarse graining pfis defined as The mean excitation number at apyis similarly easy to
evaluate by Gaussian integration, as the trace
pu=2 Py(min)(nl. (B9 ePEs

- 1 v
Tf(Pﬁ”M):zj (H —d§ df“)e EuKE g2

M
Marginalization produces an entropy that is a sum of the

marginal entropies of each componemt =n,=(K Y, (CH)

~ ~ where a notatiom , has been introduced for the mean. The
SPM=% _nEm Po(Nm)InPp(Np) |- (B10) population is the i};werse of the eigenvalue oK, the cor-
rect thermal result.
This coarse graining is performed whenever an interacting The entropy of a thermal density is a sum of marginal
engine/reservoir system is factored into separate “engine€ntropies in the eigenstate basis. Evaluating these as func-
and “reservoir” components, which are assumed to have intions of the mean occupation numbers gives
dependently well-defined entropies and equations of state.
The marginalization need not be complete, though wimen _ N - - e A
denotes g?ntracomponent eigenstates I?hat are c%upled only Spp=2 S(n“)_Z (n,+Din(n,+1)=n,Inn,
through the inter-component interactions, it effectively is. (Co)
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The preceding equations reduce the vector problem to #ons are generated by the system’s own dynamical evolu-

collection of simple scalar evaluations, but the physical contion.
tent of any interesting problem is much more apparent in a To prove this result, define a basis-independent raising
geometric notation. The Gaussian kernel can be written imperatora:;sa*o-saza“, in terms of an arbitrary complex
the basis-independent form vectoro normalized tor'o=1. The conjugate lowering op-

N + erator isa,=o'a= oy,a*, and the number operator for ex-

EKEE=ETKE. (C7) o LAy .
m citations along ther direction isn,=a_a, . Using represen-

The associated measure over complex vecfaisinvariant ~ tation(A16) for the coherent statig), the meanr-excitation
under unitary transformations, and so is also defined fronfumber in density ; evaluates simply to

the product measure in the eigenstate basis as Detk
e

fdgnge*fTK%TgF:a*K*lo,
(D1)

Tr(pﬁﬁ(r): M
I dgdé =dé"de. (&) g
o

In this geometric representation, the thermal dené@g)  the generalization of EqCY).
becomes Meanwhile, the marginal probability of exactty, excita-

tions extracts onlyn, powers of theec component ofé,
Det(K+1) . generalizing Eq(C4). A weight factor is added to the Gauss-
PBZ—MI dé'dge €14 &)(¢], (C9 ian kernel from the normalization of the component of¢),

Zm which cancels against the polynomial sum in all other or-
thogonal components. The resulting expectation is an el-
ementary Gaussian integral generalizing the Gamma func-
tion of the scalar case:

while the partition function is the ratio of determinants

B Det(K+1) tasametKe_ Det(K+1)
Z_T,f df dge —W. (ClO) ~ De
Pp(n(r):

tK f detdee §TK§7\UT§\2| P
!

The eigenstate occupation numbers are eigenvalues of the mn
diagonal matri¥< ~ 1, which thus defines a basis-independent DetK
mean number matrix =———Jo'(K+too") Lol (D2)
Det K+ oo™)

n=K L (C11) _
Its important property is the®,(n,) is properly normalized,
The thermal entropyC6) then has a representation which is while the ratio at different values af, is a power ofo"(K
manifestly invariant under unitary transformation of the +oo') 1o, making the distribution exponential im,, or

basis, thermal. It is unnecessary to evaluate the more complex ma-
. . o trix inverse K+ oo, as it is related to the mean excita-
SPB=Tr[(n+ In(n+1)—nInn]. (C12  tion number by
It is immediately apparent that thermal density matrices o'(K+ooh) o

. . . -1
are a proper subset of the Gaussian-coherent density matri- =o'K "o (D3)

ces, and that Eq$C9)—(C12) hold for a general kernel ma-
trix K with all positive eigenvalues. In particular, the trace gjmijarly, the normalization of the marginal distribution has
form for the entropy can always be reduced to a sum ovef,o simple evaluation

marginals of the eigenvalues &f which need not be those

1+ (K+ooh) o

of any Hamiltonian. This property of Gaussian-coherent rep- DetK 1

resentations will furnish a very easy way to impose condi- = . (D4)
tions of heterogeneous temperature, on system components DetK+oo') 1+0'K te

whose basis states do not diagonalize the fully interacting

Hamiltonian. APPENDIX E: PRODUCT-THERMAL

INITIAL CONDITIONS
APPENDIX D: GAUSSIAN COHERENT
REPRESENTATIONS GIVE
THERMAL MARGINALS

Just as all marginal distributions from a Gaussian-
coherent density are thermal, arbitrary heterogeneous ther-
mal initial conditions can be imposed with such a density, in

A property of Gaussian-coherent densities, which will beany basis related by unitary transformation to the eigenstate
useful in the analysis of the model engine, is that all of theitbasis. For this appendix, suppose that the coordinfids-
marginals are exactly thermal, under any basis related to thine the Gaussian integral for the raising operators of the
eigenstates oK by unitary transformation. This will lead to model in Sec. IV.
surprising ways of hiding order when the unitary transforma- In the model it was possible to choose a “preparation
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Hamiltonian” (13) whose eigenstates were products of eigen-uncertainty specifies a distribution on which measurements
states in left and right sectors, denotedndR. Each sector may be made over an indefinite time interval.
included all of the excitations in its respective reservoir, and Alternatively, something like the Heisenberg picture may
a sector-unique linear combination of the excitations in thebe adopted, by taking the Gaussian integral over the same
engine. With respect to this decomposition, write the columrcoefficients¢; used to index the coherent states. The prepa-
vector of complex¢ coefficients ration basis is related to the eigenbasis by an orthogonal
transformation, and the eigenbasis evolves under the diago-
& nal time-evolution matrix. Thus the preparation basis at time
gR

0 is related to the eigenbasis at any other time by a unitary

transformation, and the measure is invariant under these
This basis decomposition is related by an orthogonal trangransformations. Thus the only change in the Gaussian inte-
formation to{x,S,y,A} basis of eigenstate excitations of the gral is by similarity transform of the kernef, from the

e=| ol (ED)

fully interacting engine. block-diagonal form(E6) at time 0 to whatever basis is de-
For the subset of coefficients, a standard thermal den- sired at timet. The inverse matrix, evolves under the iden-
sity matrix is given by tical similarity transform, worked out for the examples of
interest in the text in Eq22).
Det(KL+I)f LtLoL
L _ Lty el a—e-TREEL sy /6L
= dé-'déte , (B2
Pp- ZL M ¢de €0 (B2 APPENDIX F: CONNECTION TO THE

CLASSICAL ACTION
in terms of inverse temperatugg", as per Eq.C9). The

corresponding density fa® is given in terms of &38R as Single-time correlations in linear models are elementary

to evaluate in Gaussian-coherent ensembles, because the
fields ¢ may simply be transformed from one tinhéo an-

R_MR deRtdgRe ¢XKREF Ry (R (E3)  othert’ with the unitary matrixe’E(’ 0. The measure is
AN invariant, and the kernel evolves by similarity transformation

under the same unitary matrix, as noted in Appendix E.
Coherent states for the full system are products of coherent zn giternative approach is to explicitly embed the appro-

states for thé. andR factors, by application of the Binomial priate time-evolution operatdcalled the time-loofs matrix)

theorem to Eq(A16). Thus, in the thermal trace, and compute classical expectations in a
18=|¢" &R (E4) background field expansion. While more cumbersome for
A single-time correlations of linear systems, this method auto-
and the product density as long as the two sectors are deco[f‘—""ti.Cally inclqdes the correlations_ implied by clqssical dy-
pled is simply namics at arbltrafy coIIectlons_ of times, and provides a sys-
tematic perturbative construction for systems that cannot be
(E5) solved exactly.
The background field expansion of heterogeneous-
temperature systems is of interest as a formal construction in

Product(ES) is itself a Gaussian integral over statés). its own right, because it produces a sum of a classical effec-
If the sector coefficients are reassembled into the column gnt, P

vector(E1), the kernel of that integral has the bIock—diagonaIt!Ve action and a mquutemperailture the”‘?a' effe_ctlve poten-
form tial. The former identifies classical dynamics, while the latter

specifies initial conditions. The sum of the two potentials has

a natural interpretation as a stationary-point evaluation of a
(E6) Matsubara path integral, analytically continued to real times

and extended to incorporate multiple temperatures. Both the
. )  interpretation and the form are retained even if the system is
As long as the system is evolving under the preparatiohonlinear. Thus, even if one does not choose to carry through
Hamiltonian, the phases of the separgteand £° cancel  the full construction in complex cases, if the classical action
from their respective Gaussian integrals, becatisandK is known, the justification is provided for combining it with a
are diagonal in the sector eigenbases. Thus the time indgkermal ensemble to select nontrivial initial conditioagng
need not be specified explicitly for either the factor or prod-with a rule for transforming the combination to describe

uct densities to be well defined. S origins of equivalent dynamics at different times.
To use densityE5) to specify the same distribution at

other times, suppose that interactions are turned on at some ) _ _ _

time labeled 0. Then take the coefficient vecfoto be the 1. Forming the time-loop generating functional

explicit coherent-state vect@p of Eq. (A22). The evolving The thermal ensemble is specified at some time).
density specified by these heterogeneous initial conditions i€oherent-state parameters are labglgdas in Appendix E,
defined at all later times by taking the Gaussian integral oveand the kernel for thé=0 distribution is denoted.

&y, with K fixed, and allowing the coherent statgd to Correlations at arbitrary times are then computed by in-
evolve as in the Schdinger picture. This is how a fixed serting Schrdinger-picture operators at those times into a

g DetKR+1)

R¢R
pgR= 3

R R
P=PpLPgR-

KL
K:[

KR’
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thermal trace of thé& matrix that evolves the states tat 0
over an interval sufficient to include them. In zero-
temperature field theory, th® matrix generally interpolates
between the initial and final true ground statesthe many-
particle application, “in” and “out” vacua. Since both bra
and ket states in the thermal ensemble are giver-&t, the
“final” ket is defined by the action of thé& matrix on thet
=0 ket, which is the conjugate of the “initial” bra. Since

this evolution must be free from the action of the operators to

be inserted, there are tw® matrices forming a time loop
[39], with all physically correlated observables inserted into
only one leg.

The time-loopS matrix is the time-loop-ordered product
of the sequence of infinitesimal operata®' 9, where H
includes interaction terms if the theory has thethis posi-
tive on the forward leg, and negative on the return. If we

PHYSICAL REVIEW E8, 046114 (2003

,5In§J_z _ Y
I—5J(t) —g—JTr{pﬁTex;{l ﬁ)dtTr[(E—J)n])n(t)}
=n;(t)

t
=Texp(|fodt (E—J))
-1
K0+I—Texp<i 3gdt(E—J)” T
0

xexp{ifodt’(E—J)).
t

Evolution under the free Hamiltonian is simple to factor
out of perturbative expansions if) so it is convenient to

X

(F5

wish to make a background-field theory of the number op-compute the so-called “interaction picture” number matrix

erators, their expectations can be generated with a perturb
tion of the energy matrix by an arbitrary prold¢t). The
generating functional then has the form

§JEZTr[pBT exp(i ﬁ)dtTr[(E—J)ﬁ])], (F1)

where the Schidinger-picture number operator is defined at
each time as

n=[n;]=[a}a"], (F2)
so that the Hamiltonian is
H=Tr En]. (F3)

T denotes time-loop ordering, and tig indicates that the
expansion of the exponential begins and ends=a. The
outer trace in Eq(F1) is over quantum states, and the trace
in the exponential is simply over matrix indices, as in Eq.
(F3).

Since coupling to the number operator preserves the lin

earity of the theory, the distributions of all single-component~
occupation numbers in the perturbed theory remain exactly

thermal. The perturbe® matrix continues to act by matrix
multiplication of the parameteé, so from form(C9) and
algebra, one can write

Ko+1

Det(Ko+1)
e

debdé, exp[ — &

—Texp(i idt(E—J)))go}.

First variation of{; generates the expectation ofin the
presence of, denotedn;:

(F4)

a_

ny(=e "Eny(t)e's, (F6)
and its conjugate probe matrix
J(t=e"EY(t)e'E (F7)

Computing with interaction-picture operators is equivalent to
performing the unitary transformation of thevariables to
appropriate times at the outset of the calculation. As ex-
pected, in the linear theory this will account for all dynami-
cal structure, and the rest of the background field expansion
will simply verify the constancy of the interaction-picture
observables. In a nontrivial theory, only an exactly solvable
part of the Hamiltonian would be used to define the interac-
tion picture, and the remaining interactions would have to be
treated perturbatively together with the influencelof

The time-loop-ordered matrix appearing in E&4) has

the expansion in interaction pictude

Texp(i fﬁodt(E—J)>=Texp(—i fﬁodtﬁ), (F8)

while the similar expansion fam; is

] -1
J(t)=Texr(—thdt’3 K0+|—Texp(—i %dt?]” T
0 0
Xexp( —ifodt’j). (F9)
t

At t=0 (either initial or fina), Eq. (F6) is no transformation,
so

n

ny(0_)=",(0.)

:Texp( —i ﬁ)dtﬁ)

-1
X K0+|—Texp(—i 3§dt"j” ., (F10
0
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_ - _ Nt the generating functional is purely real, and its proper Leg-
Ny(04)=ny(0,)=|Ko+1—-Texpg —i j;OdU T endre transform would seem to be
~ ' :eTr[Jjo]gﬂJ 7
xexp( i 39 dtJ), (F1D) 0 o
0

=™l ~Koval 5

and whenJ is Hermitian,n;(0_) andn;,(0.) are related by

a unitary transformation. At every time; evolves according
to

=7 e~ TMKoro~1Def Ky ug], (F16)

where the inverse relatio(*ngoggh(;o)s% expresses] in
terms of the most convenient number expectation, and the

dny(t) = —i[3(1),75(D)] (F12) second and third lines of EGF16) have been filled in from
dt RN the closed-form evaluation of EGF14). Since invertible re-
lations
Finally, it is convenient to use EqF8) to evaluatel; in
closed form as vo=(Ko+1) "' [ny(0-) +1]=[ny(0,) +1](Ko+1)"*
(F17)
Det(Kg+1) + _
ZJ:—MJ dépdéo exist, vg is a convenient and acceptable independent variable
77 to encode the initialand fina) conditions omn.
+ . ~ On the other hand, from the original form of the generat-
xexpg — &Kot —Texpg —i fﬁodt J] Jéo ing functional(F1), and the fact that by definition of the time
loop,
Det(Ky+1)

De\{KOH—Texp(—i fﬁodtj” eXP(i jgodtTf[En]>=1, (F189

_ T it would seem that the proper Legendre transform should
=Z DelKo{£oéo)s] have some form like

=Z Det[KOFJ(O)]exp(i 3@ dtTr(ﬁ)), (F13 (F19

§n~eXp<i jgdtTr[J(t)nJ(t)]>§J
=35

where the expectatiohjogg) is with respect to the Gaussian

integral. In fact, the correct transform must have both real and imagi-

nary terms, because the real term in BeL6) is necessary to

handle the boundary values, but not dependent at all on the

history of which Eq.(F19 should be a functional.

Ordinarily, i times the effective action is defined as the The key to correctly separating the dependencies is count-
Legendre transform of the logarithm of the generating funcing the degrees of freedom and ambiguity in the original
tional from the J-perturbed S matrix. In the finite- historyn,, and in any putative inverse functidn. Clearly,
temperature problem here, though, it is not obvious evenhe evolution equatiorfF12) cannot give dynamics to the
whether that transform should be imaginary or real. Sortingrace ofn,, so one component of any inversidp must be

out thg Co.rrect way to.do the transformation will eXpOSearhitrary except possibly at=0. This freedom can be sys-
subtleties in the inversion of the relationy that encodes tematically parametrized by splitting

initial conditions as well as dynamics.

2. Subtleties of the Legendre transformation

The reason there is a puzzle is that HgL3) clearly has 3n(t)=3i(t)+)\(t)ﬁ(t), (F20)
the form
DettKq+1) such that
etlkot f T —&l(Kg+d
- - 7 otJéo ~ ~
O] dhdtoe (F19 T (D7()]=0, (F21
with the matrix leaving A (t) an almost arbitrary function. There may be ad-
ditional nondynamical components of, such as the deter-
) ~ minant if J is Hermitian, in which case there are additional
J=1-Texpg ~i fﬁodt‘] : (F195 almost arbitrary components T . Such components could

be fixed by any regular constraint®sembling gauge condi-

If J is Hermitian(a nontrivial restriction or, but one which ~ tions), except that they must recover E¢:15 globally, to
is useful to impose for a moment in order to see the ppint encode the finitely many degrees of freedom({i0-.).
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One way to handle the global inversion is to Jethave a
singular component,

Jn(H)=Jred ) +34. 8(t—0,), (F22

imposing gauge conditions everywhere B,@g to fix A(t) ==
and any other free functions, and letting the final transforma- A
tion generated byl produce the proped. Using such an
inversion, the correct Legendre transformatiory pfis

1
gnzexp(i f}@ dtTr[ﬁrega)ﬁ(tn)e““”ol Ll
(F23
Under variations that leave initia_ifixed,
;oIndn Jred(t) =Jr(1) (F24)
= — — ,
5n(t) _ reg( n

n(o
© FIG. 5. Deformation of the Matsubara contour to include a seg-
becausel differs from J, only att=0, . The solutions  ment of time-loopS matrix. Rotatiort— — i = gives the signs for the
n(t) whereJ(t)=0 are the classical expectatiomg(t, v) action and free energy in EqF23 from a single integral with
under the intrinsic dynamics. Equati¢f24) thus vanishes at contourC, andx marks the leg on which positive-time correlations
the right solutions to define an effective action. are measured.

Meanwhile, variations of the total solution under which

F(t) remair_n_; the clas_sical stationary point with respect to itensembles. In the Matsubara theory, the partition function is
initial conditions are just those of E¢F16): a functional integral of fields on a periodic contour. Correla-
tions on the contour have an analytic continuation to retarded
o Green’s functiong39], giving the contour an interpretation
- as a rotation of a time axis to periodic imaginary values. If a
n(t)=ng(t. 7o) stationary-point expansion of the functional integral were

J vanishes on the number expectation value set by the orig performed, th'etlog Olf thehparuuon funptlcﬁnF (;';':OUIg |tsglf
nal thermal partition function, so the effective potential has>¢ & contour integral, with contour perigt] andF a density

the same relation to initial conditions that the effective action®" the imaginary time axissee Ref{20], Sec. Il A, for an

has to dynamics example. The leading“classical”) contribution toF would

The Legendre transform of a finite-temperature partitionbe the field Hamiltonian at the stationary configuration, and

function with nontrivial dynamics thus takes the form the determinantal correction would, in general, be propor-
tional to the contour length, as is generally the case in local

ding,

dvo

(= @i Serlnl efﬁf[;], (F26) field theorieqd40].
Since the effective action in E¢F26) is itself a time-loop
where for the linear, Gaussian-coherent ensemble, integral, with starting and ending points &t 0, it may be
regarded as an insertion into the imaginary contour integral
Seﬁ[ﬁ]: ag dtTr[Jreg(t)F(t)] (F27) already defining3F (the multitemperature generalization of
BF). At that point, it effectively becomes a continuation of

the original Matsubara contour to tHesa) time axis in a
periodic, complex manifold, on which all of the Green’s
functions are defined, as shown in Fig. 5. The continuation of
the stationary-point evaluation of the effective potential to

Though the constructions demonstrated here referred to thtge classical 'effectl\(e acfuon IS no more than the cumulation
form of this particular ensemble, the separation between d)f-)f the analytic continuations of the microscopic thermal to
namics and initial values is natural, and the same form forretarded Green's functions, so the form of the Legendre

the effective potential should arise for any theory that can béransform cqu_ld have been anuupgtgd. l_:ur_ther, hecause _the
expanded in Gaussian fluctuations. contour defining a thermal trace is intrinsically closed, it

must have been the time-lodp matrix, and the resulting
time-loop action it generates, that embeds that trace in real
time.

The argument of the exponential in E§26) has a natu- This derivation of classical actions from the stationary-
ral interpretation as a single contour integral, provided by theoint evaluations of Matsubara Hamiltonians was proposed
Matsubara path-integral construction of finite-temperaturén Ref.[20]. Both in that work and here, nontrivial dynamics

and

BF[N]=—InZ+TKoro—I—In(Korp)]. (F28

3. Relation to the Matsubara path integral
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arose from initial conditions of heterogeneous temperaturezaoted n=(n;);_,
In Ref. [20], the analytic structure of the path integral was_(j_)_ .
171=

made well defined by introducing a conformal factor on thesen to give the coefficients in EGF34) convenient normal-

Matsubara ma}nlfold, Whlch was itself a dyf‘am'ca' flGId'izations, with the result that they take on commutation rela-
whose fluctuations were adiabatic transformations. Here, hef

erogeneous temperature is built into an algebraic partition

function by exploiting cor_lvenl_ent featur_es of Gaussian co- [éi uéj]:2€ijkék (F35)
herent ensembles. Yet adiabaticity remains central to the con-

struction (as discussed in the textand the form of the re-  (with ¢;;, the totally antisymmetric symbol on three indiges
sulting effective potential is the same. and traces

4. Sample forms in two dimensions Tr[éi éi]=2, Yi. (F36)

The foregoing constructions are easy to illustrate for the |+ is clear from the evolution equationfF12 that

caseK, 2X 2 and Hermitian. This case exactly describes the, ~ _ . .
SandA even-state occupation numberdvat 1, analyzed in d(no),/dt=0, and from the commutation relation&35)
that the vecton; evolves as

the text as a refrigeration example, after the odd-sfatem-
ponents are integrated out of the Gaussian integral. Hermi- dan
_ : .

ticity of K, ensures reah, eigenvalues, hence real observed ——=2Jxn;. (F37)
mean number in all physical bases. Probing with Hermilian dt
|Ilust.rates the gauge ireedoms |ntrodu<?ed when both the del=hus,d(ﬁJ~ hy)/dt=0 as well.
terminant and trace af, are nondynamical. The first gauge condition that can be put on an inversion
The decomposition of a22 HermitianJ into its inde- 3 to make up for the degree of freedom unfixed by a dy-
pendent vector degrees of freedom is namical determinant di, is (Jo);=0. The correct inversion
3 of the remaining vector components then decomposes as
3:20Tei. (F29
=

- 1 -
2J,==—= ) (F38

n-n

The basis matriéozl, while

(F300  the arbitrary functior\ (t) corresponds to the degree of free-
dom unfixed by a dynamical trace af A may be gauged
—i} regularly by choosing J5)7=0, for all solutions withn,
I 1

1 where the cross product is manifestly traceless wittand
e]_: 1 }

(F32) #0. (Some basis in which such a regular gauge condition

applies can be chosen for any stationary soluti@n a finite

t interval, since a regular solution cannot be space filling on
(F32 such an interval.The expansion in components, of the func-

tion \ selected by this gauge, is

The corresponding decomposition of the number operator is
3 A= —— = ——. (F39
=0 The trace which is the argument of acti@f27) is very

with the component operators having the physical identificas 2> to evaluate in such an "axial” gauge,

tions in the engine model THIZONO)]=T{I(OnM)]=2T7n=N  (F40

No=3(Ny+ny)=3(n +Ng)=3(n,+n_), with the result that

N=3(NL=Ne), Ser[N]= f# dtn(t). (F41)
np=3(N.—n.), -
Variation of Eq.(F41 on the constraint surfacen(n)
Ny=2(Ne— ﬁy)_ (F34  constant, consistent witrlthe gauge conditions imposedi on
may be checked to yieldn/dt=0; V t. From this condition

The coefficients of theéi in this representation form and the interaction-picture definitidi¥6), it follows that the
S0O(1,3) vectors, which for the number operator may be deelassical stationary solution
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ng(t)=e'Fn(0_)e E, (F42
Then, using the inversion of E¢F17),
n(0-)=(Ko+1 =7y vo, (F43

PHYSICAL REVIEW E8, 046114 (2003
the variation of Eq(F28) for the initial condition yields
(F44)

=Ky '=n(0.),

as required.
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